98%
921
2 minutes
20
Purpose: Orthodontic interventions such as maxillary expansion are pivotal in correcting malocclusions; however, the intracellular mechanisms of bone remodeling during this process are not well understood. This study investigated the role of the mitogen-activated protein kinase (MAPK) pathway in bone remodeling during maxillary expansion and relapse in rats.
Materials And Methods: Thirty male Wistar rats were randomly divided into three groups: Control (Ctrl), Expansion only (EO), and Expansion with MEK inhibitor U0126 (EO + INH). Customized expanders applied 100 g force for seven days, followed by natural relapse. Tissue changes within the mid-palatal suture were assessed via micro-computed tomography, histology, and immunohistochemistry. In vitro, primary bone marrow mesenchymal stem cells (BMSCs) were exposed to cyclic tensile stress with or without MAPK inhibition, followed by evaluation of protein expression, alkaline phosphatase activity, and Alizarin red staining.
Results: The EO group showed a significant increase in maxillary arch width compared to the EO + INH group, a difference that remained significant after relapse. This group also had higher levels of phosphorylated mitogen-extracellular kinase (p-MEK), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and phosphorylated Ets-like transcription factor 1 (p-ELK1), along with increased osteoblast markers and bone resorption. Conversely, MAPK inhibition impeded bone remodeling, indicated by decreased osteogenic markers and fewer TRAP-positive cells. In vitro, tensile stress enhanced osteogenic differentiation, which was attenuated with MAPK inhibition.
Conclusions: Mechanical activation of MEK-ERK1/2-ELK1 pathway is essential for effective maxillary expansion. Thus, inhibiting this pathway significantly impairs bone remodeling, underscoring its potential as a therapeutic target to enhance bone formation in orthodontic treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03008207.2025.2498509 | DOI Listing |
Osteoporos Int
September 2025
Department of Rheumatology, Univ. Lille, CHU Lille, MABlab ULR 4490, 59000, Lille, France.
Medications like liraglutide 3.0 mg daily (Saxenda®; Novo Nordisk) and semaglutide 2.4 mg weekly (Wegovy®; Novo Nordisk), which are glucagon-like peptide-1 receptor agonists (GLP-1Ra), have been sanctioned for prolonged weight management in people living with obesity (PwO).
View Article and Find Full Text PDFACS Nano
September 2025
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev
Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.
View Article and Find Full Text PDFInt J Oral Implantol (Berl)
September 2025
Purpose: To evaluate changes in implant stability quotient values of hydrophilic tissue-level implants over time, and to investigate the influence of local factors on variations in these values.
Methods: Fifty tapered, self-tapping, tissue-level implants with a hydrophilic surface were placed and monitored for 12 months. Implant stability quotient values were recorded at the time of insertion (T0) and monthly thereafter for 12 months.
Int J Gen Med
September 2025
Department of Cardiothoracic Surgery, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, 200052, People's Republic of China.
Impaired clinical fracture healing remains a major challenge, with surgical treatment often insufficient in patients with metabolic disorders or comorbidities such as diabetes and osteoporosis. Recent advances in metabolomics have brought the Sirtuin protein family to the forefront of bone regeneration research. These NAD⁺-dependent deacetylases exhibit cell-specific expression and regulate critical processes in osteoblasts and osteoclasts, linking glucose metabolism with bone remodeling.
View Article and Find Full Text PDFNeurotrauma Rep
August 2025
Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, China.
This study aimed to explore the experience and complications of cranioplasty (CP) with polyether ether ketone (PEEK) in pediatric and adolescent patients after decompressive craniectomy (DC). A total of 62 children (aged <18 years) with cranial bone defects due to DC underwent CP with a custom-made PEEK at our department between January 2018 and April 2023. The clinical characteristics, radiological features, surgical conditions, postoperative complications, and follow-up results of these patients were analyzed retrospectively.
View Article and Find Full Text PDF