Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The geo-inequality of COVID-19 risk has attracted a great deal of research attention. In this study, the spatial correlation between community environment and the incidence of COVID-19 cases in 30 Chinese cities is discussed. The spread of the disease is analyzed based on timing and spatial monitoring at the km2-grid level, with the use of publicly available data relating to housing prices, Gross Deomestic Product (GDP), medical facilities, consumer sites, public green spaces, and industrial sites. The results indicate substantial geographical variations in the distribution of COVID-19 communities in all 30 cities. Significant global bivariate spatial dependence was observed between the disease and housing prices (Moran's I =0.099, p<0.01, z=488.6), medical facilities (Moran's I = 0.349, p<0.01, z=1675.0), consumer sites (Moran's I =0.369, p<0.01, z=1843.4), green space (Moran's I =0.205, p<0.01, z=1037.8), and industrial sites (Moran's I =0.234, p<0.01, z=1178.6). The risk of COVID-19 under the influence of GDP is further examined for cities with per capita GDPs from high to low ranging from 1.69 to 4.62 (1.69~3.74~4.62, 95% CI). These findings provide greater detail on the interplay between the infectious disease and community environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4081/gh.2025.1286 | DOI Listing |