98%
921
2 minutes
20
Smart materials that adapt to environmental stimuli have massive technological potential. Translating well-established molecular-level responsiveness to macroscopic systems, particularly complex systems for photocatalysis, remains a significant hurdle. Herein, we introduce a new approach using a hydrazone-linked pillararene microsphere (NP5-TF-HPM) as a smart stimuli-responsive photocatalyst. NP5-TF-HPM showcases unique proton responsiveness owing to electron-rich cavities, resulting in a proton-induced structural rearrangement from the enol-imine to keto-amine form. Experiments and density functional theory calculations reveal that pillararenes in the protonated framework function as activity amplifiers. These molecules donate π-electrons from their cavities to another building unit, not only shifting the framework's conduction band to a more negative potential, which enhances its electron-donating capability, but also inducing a nonuniform charge distribution in the donor-acceptor moiety, thereby resulting in an intramolecular built-in electric field. Consequently, protonated HPM exhibits amplified photo-oxidation activity, efficiently catalyzing sulfide photo-oxidation with high conversions (up to 99%).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.5c01273 | DOI Listing |
Nano Lett
May 2025
College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
Smart materials that adapt to environmental stimuli have massive technological potential. Translating well-established molecular-level responsiveness to macroscopic systems, particularly complex systems for photocatalysis, remains a significant hurdle. Herein, we introduce a new approach using a hydrazone-linked pillararene microsphere (NP5-TF-HPM) as a smart stimuli-responsive photocatalyst.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2022
International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
Tailoring the properties of solid-state organic luminescent materials using a bottom-up design principle is highly desirable for many applications. Herein, we present a "macrocycle-to-framework" strategy to construct macrocycle-functionalized and hydrazone-linked functional organic polymers with bright yellowish-green luminescence and unique solvatochromism behaviors by the condensation of a diacylhydrazine-functionalized pillar[5]arene with tris(4-formylbiphenyl)amine. Outperforming their non-macrocycle-incorporated counterparts, the pillar[5]arene-containing materials display amplified sensitivity to acidic conditions with luminescent and colorimetric dual-modal patterns assisted by the enhanced intramolecular charge transfer (ICT), and exhibit satisfactory responsiveness to nitrobenzene compounds through rapid luminescence quenching with high selectivity and a low detection limit, where the sensing process proceeds through multiple dynamic quenching pathways.
View Article and Find Full Text PDF