Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Efficient bacterial lysis and RNA purification are essential for molecular diagnostics and biosensing applications. This study presents a piezoelectric platform integrated with gold-plated RNA capture pins (RCPs) functionalized with synthetic oligonucleotides to extract and enrich 16S ribosomal RNA (rRNA). The 3D-printed device enables selective bacterial capture using -specific aptamers and incorporates a piezoelectric transducer operating at 60 kHz to facilitate bacterial cell wall disruption. The platform demonstrated high specificity for over , confirming aptamer selectivity. viability assessment demonstrated that positioning the piezoelectric plate in contact with the bacterial suspension significantly improved the bacterial lysis, reducing viability to 33.68% after 15 min. RNA quantification confirmed an increase in total RNA released by lysed , resulting in 10,913 ng after 15 min, compared to 4310 ng obtained via conventional sonication. RCP-extracted RNA has a threefold enrichment of 16S rRNA relative to 23S rRNA. RT-qPCR analysis indicated that the RCPs recovered, on average, 2.3 ng of 16S RNA per RCP from bacterial suspensions and 0.1 ng from aptamer-functionalized surfaces. This integrated system offers a rapid, selective, and label-free approach for bacterial lysis, RNA extraction, and enrichment for specific types of RNA with potential applications in clinical diagnostics and microbial biosensing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945596PMC
http://dx.doi.org/10.3390/s25061774DOI Listing

Publication Analysis

Top Keywords

bacterial lysis
12
rna
10
bacterial
8
selective bacterial
8
rna purification
8
capture pins
8
lysis rna
8
aptamer-functionalized platform
4
platform selective
4
bacterial isolation
4

Similar Publications

Construction of a bacterial surface display system using split green fluorescent protein (GFP) in Escherichia coli.

Biotechnol Lett

September 2025

Department of Chemical Engineering, Hongik University, Sangsu-dong, Mapo-gu, Seoul, 04066, Republic of Korea.

The cell surface display system employs carrier proteins to present target proteins on the outer membrane of cells. This system enables functional proteins to be exposed on the exterior of living cells without cell lysis, allowing direct interaction with the surrounding environment. A major limitation of conventional approaches is the difficulty in displaying large-sized enzymes or antibodies, despite their critical roles in applications requiring functional domains that must remain intact, such as catalytic or antigen-binding sites.

View Article and Find Full Text PDF

When pathogenic bacteria colonize a wound, they can create an alkaline ecological niche that selects for their survival by creating an inflammatory environment restricting healthy wound healing to proceed. To aid healing, wound acidification has been exploited to disrupt this process and stimulate fibroblast growth, increase wound oxygen concentrations, minimize proteolytic activity, and restimulate the host immune system. Within this study, we have developed cobalt-doped carbon quantum dot nanoparticles that work together with mild acetic acid, creating a potent synergistic antimicrobial therapy.

View Article and Find Full Text PDF

The FtsEX-EnvC-AmiA/B system is a key component of the cell division machinery that directs breakage of the peptidoglycan layer during separation of daughter cells. Structural and mechanistic studies have shown that ATP binding by FtsEX in the cytoplasm drives periplasmic conformational changes in EnvC, which lead to the binding and activation of peptidoglycan amidases such as AmiA and AmiB. The FtsEX-EnvC amidase system is highly regulated to prevent cell lysis with at least two separate layers of autoinhibition that must be relieved to initiate peptidoglycan hydrolysis during division.

View Article and Find Full Text PDF

Genomic characterization of four specific bacteriophages and evaluation of their cocktail efficacy in milk.

Food Sci Biotechnol

October 2025

Department of Food Science and Biotechnology, GreenTech-Based Food Safety Research Group, Chung-Ang University, BK21 Four, Anseong, Korea.

Bacteriophages offer a promising solution for controlling multidrug-resistant  in food matrices. This study analyzed the genomic, proteomic, and functional characteristics of four bacteriophages (STP-1, STP-2, STP-3, and STP-4) targeting  Typhimurium. Genomic analysis revealed lysis-related genes, including holin, endolysin, and RZ-like spanins, with no genes linked to human toxicity or antibiotic resistance.

View Article and Find Full Text PDF

Sweet potato foot rot disease caused by Diaporthe destruens (formerly Plenodomus destruens) severely affects the yield and quality of sweet potatoes. To gain basic knowledge on regulating the pathogen using indigenous soil bacteria, the following organic materials were applied to potted soils collected from a sweet potato field contaminated with D. destruens: Kuroihitomi (compost made from shochu waste and chicken manure), Soil-fine (material made by adsorbing shochu waste on rice bran), and rice bran.

View Article and Find Full Text PDF