Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

De novo variants in KCNQ2 cause neonatal onset developmental and epileptic encephalopathy (KCNQ2-DEE; Online Mendelian Inheritance in Man #613720), most often by loss-of-function in vitro effects. In this study, we describe a neonatal onset DEE proband carrying a recurrent de novo KCNQ2 variant (c.794C>T; p.A265V) affecting the pore domain of KCNQ2-encoded Kv7.2 subunits. Whole-cell patch-clamp measurement in a mammalian heterologous expression system revealed that, when compared to wild-type Kv7.2 channels, channels containing Kv7.2 A265V subunits displayed (1) reduced maximal current density; (2) decreased voltage-dependence of activation; and (3) an unusual inactivation process, with a 50% current reduction during 1-2-s depolarizing pulses at voltages > 0 mV. These effects were proportional to the number of mutant subunits incorporated in heteromeric channels, being overall less dramatic upon coexpression with Kv7.2 or Kv7.2 + Kv7.3 subunits. These results reveal current inactivation as a novel pathogenetic mechanism for KCNQ2-DEE caused by a recurrent variant affecting a critical pore residue, further highlighting the importance of in vitro functional assessment for a better understanding of disease molecular pathophysiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169393PMC
http://dx.doi.org/10.1111/epi.18427DOI Listing

Publication Analysis

Top Keywords

current inactivation
8
inactivation novel
8
developmental epileptic
8
epileptic encephalopathy
8
neonatal onset
8
potassium current
4
novel pathomechanism
4
pathomechanism kcnq2
4
kcnq2 developmental
4
encephalopathy novo
4

Similar Publications

modulates presynaptic Ca1.3 Ca channel function in inner hair cells (IHCs) and is required for indefatigable synaptic sound encoding. Biallelic variants in are associated with non-syndromic hearing loss (DFNB93).

View Article and Find Full Text PDF

Background: Serum and other blood-derived products are widely used in biomedical and biopharmaceutical processes, especially for the production of vaccines or cell therapeutic applications. To ensure quality and safety, each serum lot undergoes testing for sterility to minimize the risk of disease transmission. A currently performed standard procedure is gamma-irradiation of serum for effectively killing pathogens.

View Article and Find Full Text PDF

Objective: We investigated the effects of C9orf72 mutation carriership on peripheral nerve excitability in asymptomatic individuals from families with a history of C9orf72 amyotrophic lateral sclerosis (ALS) and patients.

Methods: We included 47 asymptomatic individuals from families with a history of C9orf72 ALS, of whom 23 were carriers (C9) and 24 were noncarriers (C9). In addition, 11 C9 and 110 C9 ALS patients and 50 healthy controls participated.

View Article and Find Full Text PDF

Research progress on bioactive peptides in the treatment of oral diseases.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Maxillofacial Surgery, Xiangya Hospital of Stomatology, Central South University, Changsha 410013, China.

Peptide-based drugs possess several advantages, including high specificity, low immunogenicity, minimal accumulation, and fewer drug-drug interactions, making them a novel and efficient therapeutic class for various diseases. In recent years, peptide-based drugs have shown great potential and broad application prospects in the treatment of oral infectious diseases, tissue injury and repair, tumors, and complex oral mucosal disorders, acting either through direct mechanisms or indirect modulation. Oral administration remains the preferred route due to its non-invasive, painless nature and ease of management; however, gastrointestinal pH can inactivate or even degrade peptide drugs.

View Article and Find Full Text PDF

Biomass-derived lignin nanoparticles for the sustained delivery of vascular endothelial growth factor-C.

Eur J Pharm Biopharm

September 2025

Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland; Individualized Drug Therapy Research Program, University of Helsinki, Finland; Wihuri Research Institute, Helsinki, Finland; Helsinki One Health, Helsinki, Finland. Electronic address:

Vascular Endothelial Growth Factor C (VEGFC) is a promising biological drug, with preclinical studies indicating its potential for treating myocardial infarction, neurodegenerative diseases, and lymphedema, a condition that currently lacks curative treatment. While adenoviral VEGFC gene therapy has progressed to phase II studies, its clinical efficacy is limited by rapid immune inactivation. This study explores lignin nanoparticles (LNPs) as an alternative VEGFC delivery system.

View Article and Find Full Text PDF