A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Structural and Functional Studies of Rabbit SAMD9 Reveal a Distinct tRNase Module That Underlies the Antiviral Activity. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human SAMD9 and SAMD9L (collectively SAMD9/9L) are large cytoplasmic proteins with antiviral and antiproliferative activities, recently shown to regulate protein synthesis by specifically cleaving phenylalanine tRNA (tRNA). The enzymatic activity of human SAMD9 (hSAMD9) resides within its N-terminal tRNase domain, which depends on three essential basic residues for tRNA binding and biological activity. While these residues are highly conserved across mammalian SAMD9/9L, lagomorph SAMD9 orthologs uniquely harbor a charge-reversal acidic residue at one of three sites, a change known to inactivate hSAMD9/9L. Here, we show that despite this variation, rabbit SAMD9 (rSAMD9) potently restricts vaccinia virus replication and specifically reduces tRNA levels, mirroring hSAMD9. However, unlike hSAMD9, rSAMD9's minimal tRNase module extends beyond the homologous tRNase domain (amino acid 158-389) to include the SIR2 region. Additional basic residues, one unique to rSAMD9, were also found to be important for its antiviral activity. The crystal structure of rSAMD9 closely resembles hSAMD9, though with difference in loop conformations. These findings demonstrate that lagomorph SAMD9 preserves core tRNA-targeting and antiviral functions despite a key residue variation and the need for an extended tRNase module.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027330PMC
http://dx.doi.org/10.1101/2025.04.10.648150DOI Listing

Publication Analysis

Top Keywords

trnase module
12
rabbit samd9
8
antiviral activity
8
activity human
8
human samd9
8
trnase domain
8
basic residues
8
lagomorph samd9
8
samd9
6
trnase
5

Similar Publications