98%
921
2 minutes
20
Due to the low bioactivity of titanium implants, the extended bone integration process after implantation substantially heightens the risk of inflammation, a primary cause of implant failure. To mitigate inflammatory responses and enhance bone integration between the implant and bone tissue, based on prior research that applied calcium phosphate (CaP) on titanium surfaces, we employed electrospraying technology to develop a drug-loaded polycaprolactone/silk fibroin/polydopamine (PCL/SF/PDA) composite coating as the second layer on top of the calcium phosphate deposition. The surface morphologies of the CaP deposits and composite coatings were characterized by SEM. The SF/PDA gel significantly increased the adhesion of the coating, thereby enhancing its clinical application potential. All materials exhibited excellent biodegradability, and their superior biocompatibility was confirmed through cell assays. Following in vitro experiments, in vivo studies were conducted using a rat cranial defect model. Micro-CT results and staining demonstrated that CaP deposition significantly accelerated bone integration between the titanium substrate and bone, while the drug-loaded polymer coating notably improved the inflammatory environment at the defect site. These findings offer new insights into the development of titanium implants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12019756 | PMC |
http://dx.doi.org/10.1021/acsomega.4c06731 | DOI Listing |
Connect Tissue Res
September 2025
Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
Osteoarthritis (OA) is a multifactorial, mechano-inflammatory joint disorder characterized by cartilage degradation, synovial inflammation, and subchondral bone remodeling. Despite its high prevalence and significant impact on quality of life, no disease-modifying treatments have been approved. In many other disease areas, advanced omics technologies are impacting the development of advanced therapies.
View Article and Find Full Text PDFBest Pract Res Clin Endocrinol Metab
August 2025
Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel 4031, Switzerland; Department of Clinical Research, University Hospital Basel, University of Basel, Basel 4031, Switzerland; Department of Endocrinology and Diabetes, Cantonal Hospital Baselland, Switzerland. E
Chronic hyponatremia is increasingly recognized as a potential contributor to impaired bone health, although the underlying pathophysiological mechanisms have not yet been fully elucidated. Experimental studies have demonstrated that low serum sodium levels affect both osteoclast and osteoblast function, resulting primarily in increased bone resorption and secondarily in reduced bone formation. In humans, however, evidence regarding the effects of hyponatremia on bone remains limited.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Faculty of Applied Sciences, Macao Polytechnic University, Macao. Electronic address:
Osteosarcoma (OS), the most prevalent primary bone malignancy in adolescents, is characterized by aggressive progression and early metastasis. However, the epigenetic drivers of its metastatic heterogeneity remain poorly understood. Herein, we integrated bulk DNA methylation profiling and single-cell RNA sequencing (scRNA-seq) to elucidate the epigenetic mechanisms driving OS metastatic heterogeneity.
View Article and Find Full Text PDFChemistryOpen
September 2025
Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
G protein-coupled receptor family C, group 5, member D (GPRC5D), a member of the G protein-coupled receptor (GPCR) family, has recently emerged as a promising target for immunotherapy in hematologic malignancies, particularly multiple myeloma. However, no systematic virtual screening studies have been conducted to identify small-molecule inhibitors targeting GPRC5D. To address this gap, a multistep computational screening strategy is developed that integrates Protein-Ligand Affinity prediction NETwork (PLANET), a GPU-accelerated version of AutoDock Vina (Vina-GPU), molecular mechanics/generalized born surface area (MM/GBSA), and an online tool for Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) property prediction (admetSAR 3.
View Article and Find Full Text PDFDrug Discov Today
September 2025
Department of Pharmaceutical and Artificial-Intelligence Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Cen
The landscape of allosteric drug discovery is undergoing a transformative shift, driven by the integration of three computational approaches: machine learning (ML), molecular dynamics (MD) simulations, and network theory. ML identifies potential allosteric sites from multidimensional biological datasets; MD simulations, empowered by enhanced sampling algorithms, reveal transient conformational states; and network analyses uncover communication pathways, further aiding in site identification. Their synergy enables rational allosteric modulator design.
View Article and Find Full Text PDF