The use of a convolutional neural network to automate radiologic scoring of computed tomography of paranasal sinuses.

Biomed Eng Online

Department of Otolaryngology-Head and Neck Surgery, Unity Health TorontoSt. Michael's Hospital, University of Toronto, 30 Bond Street, 8 Cardinal Carter Wing, Toronto, ON, M5B 1W8, Canada.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Chronic rhinosinusitis (CRS) is diagnosed with symptoms and objective endoscopy or computed tomography (CT). The Lund-Mackay score (LMS) is often used to determine the radiologic severity of CRS and make clinical decisions. This proof-of-concept study aimed to develop an automated algorithm combining a convolutional neural network (CNN) for sinus segmentation with post-processing to compute LMS directly from CT scans.

Results: Radiology Information System was queried for outpatient paranasal sinus CTs at a tertiary institution. We identified 1,399 CT scans which were manually labelled with LMS of individual sinuses. Seventy-seven CT scans with 13,668 coronal images were segmented manually for individual sinuses. Our model for segmentation achieved a mean Dice score of 0.85 for all sinus regions, except for the osteomeatal complex. For individual Dice scores were 0.95, 0.71, 0.78, 0.93, 0.86 for the maxillary, anterior ethmoid, posterior ethmoid, sphenoid, and frontal sinuses, respectively. LMS was computed automatically by applying adaptive image thresholding and pixel counting to the CNN's segmented regions. A convolutional neural network (CNN) model was trained to segment each sinus region. Overall, the LMS model showed a high degree of accuracy with a score of 0.92, 0.99, 0.99, 0.97, 0.99, 0.86 for the maxillary, anterior ethmoid, posterior ethmoid, sphenoid, and frontal sinuses, respectively.

Conclusions: Reporting of paranasal sinus CT can be automated and potentially standardized with a CNN model to provide accurate Lund-Mackay score.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036281PMC
http://dx.doi.org/10.1186/s12938-025-01376-7DOI Listing

Publication Analysis

Top Keywords

convolutional neural
12
neural network
12
computed tomography
8
lund-mackay score
8
network cnn
8
paranasal sinus
8
individual sinuses
8
086 maxillary
8
maxillary anterior
8
anterior ethmoid
8

Similar Publications

Hybrid two-stage CNN for detection and staging of periodontitis on panoramic radiographs.

J Oral Biol Craniofac Res

August 2025

Neura Integrasi Solusi, Jl. Kebun Raya No. 73, Rejowinangun, Kotagede, Yogyakarta, 55171, Indonesia.

Background: Periodontal disease is an inflammatory condition causing chronic damage to the tooth-supporting connective tissues, leading to tooth loss in adults. Diagnosing periodontitis requires clinical and radiographic examinations, with panoramic radiographs crucial in identifying and assessing its severity and staging. Convolutional Neural Networks (CNNs), a deep learning method for visual data analysis, and Dense Convolutional Networks (DenseNet), which utilize direct feed-forward connections between layers, enable high-performance computer vision tasks with reduced computational demands.

View Article and Find Full Text PDF

DeepRNAac4C: a hybrid deep learning framework for RNA N4-acetylcytidine site prediction.

Front Genet

August 2025

Hunan Provincial Key Laboratory of Finance and Economics Big Data Science and Technology, Hunan University of Finance and Economics, Changsha, China.

RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization.

View Article and Find Full Text PDF

Gene mutation estimations via mutual information and Ewens sampling based CNN & machine learning algorithms.

J Appl Stat

February 2025

Department of Mathematics and State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, People's Republic of China.

We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning algorithms. More precisely, we develop a systematic methodology through constructing a CNN. Meanwhile, we develop two machine learning algorithms to study protein production with target gene sequences and protein structures.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma is the most common type of non-Hodgkin lymphoma (NHL) in humans, accounting for about 30-40% of NHL cases worldwide. Canine diffuse large B-cell lymphoma (cDLBCL) is the most common lymphoma subtype in dogs and demonstrates an aggressive biologic behaviour. For tissue biopsies, current confirmatory diagnostic approaches for enlarged lymph nodes rely on expert histopathological assessment, which is time-consuming and requires specialist expertise.

View Article and Find Full Text PDF

Background And Aim: Granulosa cells (GCs) are crucial mediators of follicular development and oocyte competence in goats, with their gene expression profiles serving as potential biomarkers of fertility. However, the lack of a standardized, quantifiable method to assess GC quality using transcriptomic data has limited the translation of such findings into reproductive applications. This study aimed to develop a hybrid deep learning model integrating one-dimensional convolutional neural networks (1DCNNs) and gated recurrent units (GRUs) to classify GCs as fertility-supporting (FS) or non-fertility-supporting (NFS) using single-cell RNA sequencing (scRNA-seq) data.

View Article and Find Full Text PDF