98%
921
2 minutes
20
Conditionally Automated driving (CAD) represents a pivotal point in the evolution of automotive technology, bridging full automation and human intervention through effective control mechanisms that ensure safe driver-system transitions. This research consisted of a comparative analysis of take-over mechanisms, focusing on ordinary merging and diverging maneuvers and critical collision-avoidance scenarios. Three take-over control (TOC) methods, including (i) accelerating/braking, (ii) pressing a dedicated button, and (iii) steering, were investigated. Thirty participants were recruited using a mixed factorial design with both within- and between-subject factors. The experimental simulations were conducted on the fixed-base driving simulator. The participants completed three runs on a motorway track comprising ordinary merging and diverging sections, with the final run involving a sudden critical decision to avoid the collision against two crashed vehicles. Weibull accelerated failure time models with and without shared frailty, mixed effects linear regression and multiple linear regression were used to model TOC time, maximum resultant acceleration, and minimum time to collision values. The results indicate that the pedal mechanism generally provides faster and safer takeovers, especially in critical situations, while the button mechanism results in the longest TOC times, and lowest minimum time to collision values, indicating higher risks. The steering wheel mechanism, associated with the highest maximum resultant acceleration and TOC times in merging and diverging maneuvers, suggests that lateral control may be more cognitively demanding for drivers. These findings emphasize the importance of selecting appropriate TOC mechanisms to improve the safety and efficiency of CAD systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aap.2025.108068 | DOI Listing |
Theor Appl Genet
August 2025
Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution (GQE) - Le Moulon, 91190, Gif-Sur-Yvette, France.
Differentiation between Stiff Stalk and Non-Stiff Stalk heterotic groups increased significantly over time, while genetic diversity within both groups declined, highlighting the impact of long-term selection in hybrid maize breeding. Differentiation between Stiff Stalk and Non-Stiff Stalk heterotic groups increased significantly over time, while genetic diversity within both groups declined, highlighting the impact of long-term selection in hybrid maize breeding. The separation of germplasm into complementary heterotic genetic pools is fundamental to modern hybrid breeding programs.
View Article and Find Full Text PDFJ Am Chem Soc
August 2025
Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
The stereodivergent synthesis of structurally complex molecules bearing multiple stereochemical elements represents a pivotal challenge in modern synthetic chemistry, particularly for bioactive compounds, where stereochemical nuances dictate pharmacological profiles. While stereodivergent dual catalysis has advanced full access to stereoisomers with stereogenic centers, the integration of stereodefined alkenes into chiral molecules with both stereochemical and skeletal diversification remains elusive. In this study, we report stereo- and skeleton-divergent access to chiral fluorinated -heterocycles with comprehensive stereocontrol of [(,), (,), (,), (,)] and [(,), (,), (,), (,)] enabled by a bimetallic Cu/Ru relay catalytic system, featuring redox-neutral efficiency and atom/step economy.
View Article and Find Full Text PDFNat Commun
August 2025
School of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, P. R. China.
As autonomous vehicles and traditional vehicles will coexist for several decades, how to efficiently manage the mixed traffic, while enhancing road throughput, fuel consumption and traffic stability becomes a challenge. This is due to the randomness and heterogeneity of traditional vehicles interspersed among autonomous vehicles. Moreover, communication delays arising from the shared wireless communication network substantially degrade the performance of platooning control for connected autonomous vehicles.
View Article and Find Full Text PDFIEEE Trans Comput Biol Bioinform
January 2025
The abundance of intestinal flora is closely related to human diseases, but diseases are not caused by a single gut microbe. Instead, they result from the complex interplay of numerous microbial entities. This intricate and implicit connection among gut microbes poses a significant challenge for disease prediction using abundance information from OTU data.
View Article and Find Full Text PDFInt J Inj Contr Saf Promot
August 2025
Graduate School of Urban Innovation, Yokohama National University, Yokohama, Japan.
Traffic disruptions (including frequent and abrupt lane changes in critical merging, diverging and overtaking zones) often result in expressway accidents. This study analysed crash data from the Ethiopian Toll Road Enterprise (2015-2022) using statistical and multinomial logistic regression models to identify high-risk crash locations, assess the severity and investigate the contributing factors in key merging and diverging sections. The analysis considered risk factors such as driver behaviour, traffic patterns, vehicle types, road conditions and lighting.
View Article and Find Full Text PDF