98%
921
2 minutes
20
Background: Impairment in response inhibition function is highly prevalent in patients with major depressive disorder (MDD), yet the spatiotemporal neural activity underlying response inhibition and its relationship with the autonomic nervous system (ANS) remains unclear.
Methods: 35 MDD participants and 35 healthy controls (HC) were included with magnetoencephalography (MEG) and electrocardiogram (ECG) data collecting during a go/no-go task. Heart rate variability (HRV) indices were calculated from the ECG data. Differences in functional connectivity (FC) of gamma oscillations (60-90 Hz) between 0-200 ms, 200-400 ms, and 400-600 ms in the two groups after no-go stimuli were analyzed, and the correlation between FC and HRV indices was examined.
Results: The MDD group exhibited poorer task performance and lower HRV indices than the HC group. During the 200-400 ms period, compared to the HC group, the MDD group exhibited decreased FC between the left inferior frontal gyrus (opercular part) and right temporal pole (middle temporal gyrus) (t = 3.62, p < 0.05), and increased FC between the right superior frontal gyrus (orbital part) and right superior occipital gyrus (t = 3.68, p < 0.05). Additionally, a significant positive correlation was found between FC of the left inferior frontal gyrus (opercular part) and right middle temporal gyrus (temporal pole) and the HRV index RMSSD in the MDD group (r = 0.491, p < 0.05).
Conclusion: Abnormal spatiotemporal interactions in gamma oscillations related to response inhibition are observed in MDD patients and abnormal gamma oscillations showed task-dependent covariation with ANS indices, suggesting their potential interplay in MDD pathophysiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2025.121234 | DOI Listing |
Neuroscience
September 2025
Research Group "Synapto-Oscillopathies", Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany; Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, releasing corticosterone (CORT), which binds to glucocorticoid (GR) and mineralocorticoid (MR) receptors in the brain. While stress influences behaviorally relevant network oscillations in limbic regions such as the hippocampus, amygdala, and prefrontal cortex, the direct effects of CORT on these oscillations remain unclear. We examined the acute impact of CORT on anterior cingulate cortex (ACC) oscillations in adult male mice, a hub region for stress and anxiety regulation.
View Article and Find Full Text PDFWhole-brain models are valuable tools for understanding brain dynamics in health and disease by enabling the testing of causal mechanisms and identification of therapeutic targets through dynamic simulations. Among these models, biophysically inspired neural mass models have been widely used to simulate electrophysiological recordings, such as MEG and EEG. However, traditional models face limitations, including susceptibility to hyperexcitation, which constrains their ability to capture the full richness of neural dynamics.
View Article and Find Full Text PDFGamma oscillations (30-100 Hz) have long been theorized to play a key role in sensory processing and attention by coordinating neural firing across distributed neurons. Gamma oscillations can be generated internally by neural circuits during attention or exogenously by stimuli that turn on and off at gamma frequencies. However, it remains unknown if driving gamma activity via exogenous sensory stimulation affects attention.
View Article and Find Full Text PDFPLoS One
September 2025
Scientific Institute, IRCCS E. Medea, Bosisio Parini (LC), Italy.
Background: Children with cerebral palsy (CP) commonly face gross motor function impairments and manual dexterity deficits, significantly affecting their activity level and independence and, ultimately, quality of life. Rehabilitation often targets improving manual dexterity and activity levels, but standard therapies have limited efficacy. Hence, exploring novel methods to enhance upper limb functionality is crucial.
View Article and Find Full Text PDFPediatr Neurol
August 2025
Child Study Center, Yale University School of Medicine, New Haven, Connecticut.
Background: Tourette syndrome (TS) and attention-deficit/hyperactivity disorder (ADHD) often co-occur and are linked to emotional and behavioral difficulties. However, their shared and distinct neural underpinnings, particularly in terms of functional connectivity, remain unclear. Here, we assessed how functional connectivity differs across TS and ADHD as well as its association with emotional and behavioral difficulties.
View Article and Find Full Text PDF