Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metallothioneins (MTs) are small cysteine-rich proteins that preferentially bind d metal ions such as Zn, Cu, and Cd, playing essential roles in metal ion homeostasis and detoxification. The E-1 metallothionein from Triticum aestivum (common bread wheat) was the first plant metallothionein for which a 3D structure was successfully determined, although this structure represents only the fully metalated state of the protein. In this study, we aim to elucidate the metalation pathway of the β-domain of wheat E-1. This domain features a mononuclear Zn binding site composed of two cysteine and two highly conserved histidine residues, reminiscent of the Zn-finger motifs found in certain proteins. Moreover, the domain forms a trinuclear ZnCys cluster, similar to the β-cluster motif observed, for example, in vertebrate MTs. To investigate the metalation pathway of the β-domain, we combined nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and targeted cysteine modification techniques. Our results confidently identify the sequential binding site regions for each of the four Zn ions and reveal intriguing, unexpected insights into the folding pathway of the peptide backbone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2025.112931DOI Listing

Publication Analysis

Top Keywords

metalation pathway
12
e-1 metallothionein
8
pathway β-domain
8
binding site
8
elucidating metalation
4
pathway
4
pathway e-1
4
metallothionein β-domain
4
β-domain insights
4
insights binding
4

Similar Publications

Associations between element mixtures and biomarkers of pathophysiologic pathways related to autism spectrum disorder.

J Trace Elem Med Biol

September 2025

Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China. Electronic address:

Objective: We previously documented that exposure to a spectrum of elements is associated with autism spectrum disorder (ASD). However, there is a lack of mechanistic understanding as to how elemental mixtures contribute to the ASD development.

Materials And Methods: Serum and urinary concentrations of 26 elements and six biomarkers of ASD-relevant pathophysiologic pathways including serum HIPK 2, serum p53 protein, urine malondialdehyde (MDA), urine 8-OHdG, serum melatonin, and urine carnitine, were measured in 21 ASD cases and 21 age-matched healthy controls of children aged 6-12 years.

View Article and Find Full Text PDF

Myocardial injury constitutes a life-threatening complication of sepsis, driven by synergistic oxidative-inflammatory pathology involving dysregulated production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and proinflammatory cytokines. This pathophysiological cascade remarkably elevates morbidity and mortality rates in septic patients, emerging as a key contributor to poor clinical outcomes. Despite its clinical significance, no clinically validated therapeutics currently exist for managing septic cardiomyopathy.

View Article and Find Full Text PDF

Objective: Aim: To investigate the role of serum vitamin D3 in the pathogenesis and diagnosis for hypothyroidism..

Patients And Methods: Materials and Methods: Cross-sectional study was conducted at the Outpatient Analytics Center of Al-Nokhba and Al-Sadder Teaching Hospital, Najaf, Iraq, between October 2021 and February 2022.

View Article and Find Full Text PDF

Atom-precise coinage metal nanoclusters for near-infrared emission: excited-state dynamics and mechanisms.

Chem Soc Rev

September 2025

State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

Understanding the excited-state dynamics of atomically precise coinage metal nanoclusters (CMNCs) is pivotal for elucidating their photoluminescence (PL) mechanisms and rationally tuning emission properties-particularly in the near-infrared (NIR) region, where CMNC-based nanomaterials have tremendous potential for biomedical and optoelectronic applications. This review presents a systematic and comprehensive account of recent advances in investigating the excited-state dynamics and PL mechanisms of NIR-emitting CMNCs with atomic precision, leveraging the synergistic integration of time-resolved spectroscopy and time-dependent density functional theory (TD-DFT) calculations. Distinct from previous reviews that offer a broad survey of CMNC properties, the present review focuses specifically on intrinsic factors, highlighting molecular vibrational features and electronic structure modulation as key determinants of NIR emission.

View Article and Find Full Text PDF

Evolution of cross-tolerance to metals in yeast.

Proc Natl Acad Sci U S A

September 2025

Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

Organisms often face multiple selective pressures simultaneously (e.g., mine tailings with multiple heavy metal contaminants), yet we know little about when adaptation to one stressor provides cross-tolerance or cross-intolerance to other stressors.

View Article and Find Full Text PDF