Research on Binary Mixed VOCs Gas Identification Method Based on Multi-Task Learning.

Sensors (Basel)

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Traditional volatile organic compounds (VOCs) detection models separate component identification and concentration prediction, leading to low feature utilization and limited learning in small-sample scenarios. Here, we realize a Residual Fusion Network based on multi-task learning (MTL-RCANet) to implement component identification and concentration prediction of VOCs. The model integrates channel attention mechanisms and cross-fusion modules to enhance feature extraction capabilities and task synergy. To further balance the tasks, a dynamic weighted loss function is incorporated to adjust weights dynamically according to the training progress of each task, thereby enhancing the overall performance of the model. The proposed network achieves an accuracy of 94.86% and an R score of 0.95. Comparative experiments reveal that using only 35% of the total data length as input data yields excellent identification performance. Moreover, multi-task learning effectively integrates feature information across tasks, significantly improving model efficiency compared to single-task learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031209PMC
http://dx.doi.org/10.3390/s25082355DOI Listing

Publication Analysis

Top Keywords

multi-task learning
12
based multi-task
8
component identification
8
identification concentration
8
concentration prediction
8
learning
5
binary mixed
4
mixed vocs
4
vocs gas
4
identification
4

Similar Publications

Kinship verification via correlation calculation-based multi-task learning.

PLoS One

September 2025

School of Computer Science and Technology, Huaiyin Normal University, Huai'an, Jiangsu, China.

Previous studies have demonstrated that metric learning approaches yield remarkable performance in the field of kinship verification. Nevertheless, a prevalent limitation of most existing methods lies in their over-reliance on learning exclusively from specified types of given kin data, which frequently results in information isolation. Although generative-based metric learning methods present potential solutions to this problem, they are hindered by substantial computational costs.

View Article and Find Full Text PDF

Dosiomics-guided deep learning for radiation esophagitis prediction in lung cancer: optimal region of interest definition via multi-branch fusion auxiliary learning.

Radiother Oncol

September 2025

Department of Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325000, China. Electronic address:

Background: Accurate delineation of regions of interest (ROIs) is critical for feature extraction and selection in radiomics-based prediction models.

Purpose: To develop a combined dosiomics and deep learning (DL) model for predicting grade ≥ 2 radiation esophagitis (RE) in lung cancer patients undergoing radiotherapy, we propose a multi-task auxiliary learning approach to define accurate and objective ROIs based on radiation dose distribution (RDD) images.

Materials And Methods: Lung cancer patients who underwent radiotherapy were gathered retrospectively from hospital 1 (January 2020 and December 2022) for model development.

View Article and Find Full Text PDF

With the rapid development of industrial automation and intelligent manufacturing, defect detection of electronic products has become crucial in the production process. Traditional defect detection methods often face the problems of insufficient accuracy and inefficiency when dealing with complex backgrounds, tiny defects, and multiple defect types. To overcome these problems, this paper proposes Y-MaskNet, a multi-task joint learning framework based on YOLOv5 and Mask R-CNN, which aims to improve the accuracy and efficiency of defect detection and segmentation in electronic products.

View Article and Find Full Text PDF

Generalized visual grounding tasks, including Generalized Referring Expression Comprehension (GREC) and Segmentation (GRES), extend the classical visual grounding paradigm by accommodating multi-target and non-target scenarios. Specifically, GREC focuses on accurately identifying all referential objects at the coarse bounding box level, while GRES aims for achieve fine-grained pixel-level perception. However, existing approaches typically treat these tasks independently, overlooking the benefits of jointly training GREC and GRES to ensure consistent multi-granularity predictions and streamline the overall process.

View Article and Find Full Text PDF

Precision livestock farming increasingly relies on non-invasive, high-fidelity systems capable of monitoring cattle with minimal disruption to behavior or welfare. Conventional identification methods, such as ear tags and wearable sensors, often compromise animal comfort and produce inconsistent data under real-world farm conditions. This study introduces Dairy DigiD, a deep learning-based biometric classification framework that categorizes dairy cattle into four physiologically defineda groups-young, mature milking, pregnant, and dry cows-using high-resolution facial images.

View Article and Find Full Text PDF