Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dedifferentiated fat (DFAT) cells are adipocyte-derived cells that are able to differentiate into multiple cell lineages such as adipocytes, osteoblasts and chondrocytes, similar to mesenchymal stem cells (MSCs). Despite their great potential for developing novel clinical interventions by using their multipotency, the detailed mechanisms of how adipocytes undergo dedifferentiation into DFAT cells are not completely understood, because useful in vitro tools for studying adipocyte dedifferentiation are missing. In this study, we show that mature adipocytes derived from the MSC cell line C3H10T1/2 underwent dedifferentiation into cells with DFAT cell-like characteristics, when they were cultured in an inverted flask. During the dedifferentiation, expression levels of genes and protein specific to adipocytes were continuously decreased, whereas those for MSC, proliferation and WNT/β-catenin signaling were gradually increased. These DFAT-like cells also underwent differentiation into adipocytes, osteoblasts and chondrocytes with their specific cell morphology and gene expression. We also observed that an individually cultured single adipocyte also underwent dedifferentiation into DFAT-like cells that were able to differentiate into the multiple cell lineages. Our results indicate that C3H10T1/2 cells could be a great tool for determining molecular biological and biochemical mechanisms underlying adipocyte dedifferentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12024763PMC
http://dx.doi.org/10.3390/biology14040444DOI Listing

Publication Analysis

Top Keywords

adipocyte dedifferentiation
12
mesenchymal stem
8
studying adipocyte
8
cells
8
dfat cells
8
cells differentiate
8
differentiate multiple
8
multiple cell
8
cell lineages
8
adipocytes osteoblasts
8

Similar Publications

Purpose: Liposarcoma (LPS) is the most common soft tissue sarcoma. Well-differentiated LPS (WDLPS) can progress to dedifferentiated LPS (DDLPS), a more aggressive form with higher metastatic potential and poor response to existing therapies. Progress in understanding and treating LPS has been limited.

View Article and Find Full Text PDF

This report presents the case of a 62-year-old male who presented with a two-month history of right flank pain and decreased appetite. Clinical evaluation revealed a palpable, non-tender mass in the right flank, while laboratory tests demonstrated mild anemia (hemoglobin 9.3 g/dL) with otherwise normal renal function.

View Article and Find Full Text PDF

Glottic insufficiency results from impaired vocal fold contact, leading to a gap between the folds and manifesting as hoarseness and respiratory difficulties. Vocal folds injection is a commonly utilized therapeutic approach to rectify this gap by augmenting vocal folds volume; however, the optimal injectable material remains undetermined. Dedifferentiated fat cells (DFATs), derived from mature adipocytes, exhibit robust proliferative capacity and multipotency, establishing them as potential candidates for treating glottic insufficiency.

View Article and Find Full Text PDF

Tumor invasion constitutes a multifaceted process encompassing collective cellular migration and dynamic cell-fate transitions. Although these aspects have been studied separately by physicists and biologists, their spatiotemporal coupling remains unclear. To bridge this gap, we introduce a tumor-adipose assembloid model that facilitates live tracking and temporal analysis of cancer cells and adipocytes.

View Article and Find Full Text PDF

Well-differentiated and dedifferentiated liposarcoma (WD/DD LPS) represent a pathological continuum, often coexisting within the same tumor. While the dedifferentiated component is clinically aggressive, marked by rapid growth and metastatic potential, the evolutionary relationship between WD and DD LPS remains unknown. To investigate this, we performed single-nucleus RNA sequencing on matched WD and DD tumor regions.

View Article and Find Full Text PDF