98%
921
2 minutes
20
Understanding atomic-level imperfections is crucial in various technological applications. Bragg coherent X-ray diffraction imaging (BCDI) enables non-destructive, three-dimensional imaging of those materials under in situ and operando conditions but has limited spatial resolution. This limitation hinders accurate calculations of physical quantities, e.g. strain field energy and strain correlation lengths. In this study, we introduce the extended image restoration (ExImRes) method, which infers enhanced resolution images based primarily on the process of averaging and combining multiple datasets obtained by restricting the original measured datasets through binning or cropping. We apply ExImRes to two nanocrystal examples-a chiral gold nanoparticle and a platinum nanoparticle-with an improved spatial resolution that allowed us to obtain precise calculation results of strain field energy and the correlation lengths of atomic deformations. The enhanced images reveal detailed lattice-scale information previously inaccessible through traditional BCDI methods. Our findings advance ExImRes to obtain high-resolution analysis in imaging techniques that involve reciprocal to real space transformations and understand underlying phenomena in materials science.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067331 | PMC |
http://dx.doi.org/10.1107/S1600577525002942 | DOI Listing |
Microbiol Spectr
September 2025
United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Southeast Poultry Research Laboratories, US National Poultry Research Center, Athens, Georgia, USA.
Infectious bursal disease (IBD), a highly contagious viral disease in young chickens, poses significant economic losses due to high mortality and immunosuppression. While IBD virus (IBDV) virulence is influenced by multiple genes, whole-genome sequencing (WGS) of IBDV is crucial for defining the strain pathotype and clinical profile. Flinders Technology Associates (FTA) cards are convenient for field sample collection, but their filter paper matrix can hinder nucleic acid recovery, impacting sequencing efficiency.
View Article and Find Full Text PDFChem Sci
September 2025
College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 P. R. China
Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) owing to abundant resources and cost-effectiveness. However, cathode materials face persistent challenges in structural stability, ion kinetics, and cycle life. This review highlights the transformative potential of high-entropy (HE) strategies that leveraging multi-principal element synergies to address these limitations entropy-driven mechanisms.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
Multifunctional materials that simultaneously possess intrinsic magnetic and superhard properties, particularly those composed of light elements, have a wide range of applications in advanced sensors, shielding, durable devices, and other fields. However, research on the development and understanding of such materials remains limited. In this study, a series of 3D C covalent networks derived from the C fullerene precursor were theoretically designed.
View Article and Find Full Text PDFJ Vet Diagn Invest
September 2025
Biology Department; Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
Lumpy skin disease (LSD) is a viral disease that affects livestock and is caused by the lumpy skin disease virus (LSDV). An outbreak of LSD in any country can lead to acute economic damage for livestock owners. The significance of prompt and accurate diagnosis in managing this viral disease cannot be overstated.
View Article and Find Full Text PDFPlant Dis
September 2025
Anhui Academy of Agricultural Sciences, Institute of Plant Protection and Agro-Products Safety, Nongkenan 40, Luyang District, Hefei, Anhui province,China, Hefei, Anhui Province, China, 230031;
Since its emergence in 2020, a novel bacterial leaf blight caused by Pantoea ananatis has posed a serious threat to rice production in Anhui Province, China. Through verification via Koch's postulates and three years of field monitoring, P. ananatis strain HQ01 was identified as the dominant pathogen, exhibiting high virulence even at low inoculum concentrations (10² CFU/mL).
View Article and Find Full Text PDF