Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

is one of the main pathogens causing rice seedling blight disease. Revealing its pathogenic mechanism is of great significance for formulating prevention and control strategies for rice seedling blight disease. Copper transporting P-type ATPases (Cu-ATPase) is a large class of proteins located on the plasma membrane that utilize the energy provided by ATP hydrolysis phosphorylation to transport substrates across the membrane. It plays a crucial role in signal transduction, the maintenance of cell membrane stability, and material transport. The main function of Cu-ATPase is to maintain the homeostasis of copper in cells, which is essential for the normal growth and development of organisms. This study utilized the ATMT-mediated gene knockout method to obtain the knockout mutant and the complementation strain , which are highly homologous to the P-type heavy metal transport ATPase family in . The results showed that, compared with the wild-type strain, the knockout mutant had a lighter colony color; a reduced tolerance to copper ion, osmotic, and oxidative stress; a weakened ability to penetrate glass paper; and decreased pathogenicity. However, there was no significant difference in pathogenicity and other biological phenotypes between the complementation strain and the wild-type strain. In summary, the gene is involved in osmotic and oxidative stress, affecting the invasion and penetration ability and pathogenicity of , laying a theoretical foundation for understanding the development and pathogenic mechanism of .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028882PMC
http://dx.doi.org/10.3390/jof11040317DOI Listing

Publication Analysis

Top Keywords

rice seedling
12
seedling blight
12
causing rice
8
blight disease
8
pathogenic mechanism
8
knockout mutant
8
complementation strain
8
wild-type strain
8
osmotic oxidative
8
oxidative stress
8

Similar Publications

Rice Root Iron Plaque as a Mediator to Stimulate Methanotrophic Nitrogen Fixation.

Environ Sci Technol

September 2025

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Iron plaque (IP) on rice root surfaces has been extensively documented as a natural barrier that effectively reduces contaminant bioavailability and accumulation. However, its regulatory mechanisms in rhizospheric methane oxidation and biological nitrogen fixation (BNF) remain elusive. This study reveals a previously unrecognized function of IP: mediating methanotrophic nitrogen fixation through coupled aerobic methane oxidation and IP reduction (Fe-MOX).

View Article and Find Full Text PDF

Shortawn foxtail (Alopecurus aequalis Sobol.) is a challenging weed species to manage in wheat production systems globally. In prior research, we identified a field population of A.

View Article and Find Full Text PDF

Introduction: Rice is mainly consumed by half of the world's population. The imminent climate change and population growth expected in the next 30 years will outpace the current rice production capacity, posing risks to food and nutrition security in developing nations. One simplified approach to address this challenge is to improve photosynthetic capacity by increasing chlorophyll content in leaves and stems.

View Article and Find Full Text PDF

Cadmium telluride quantum dots (CdTe QDs) have been increasing in the environment because of their large application in solar panels and biological industries. However, the potential role and bioaccumulation behavior of CdTe QDs in plants are unknown. Herein, the toxicity of CdTe QDs on the growth and the underlying mechanisms were explored in rice.

View Article and Find Full Text PDF

The defensin-like protein OsCDT5 reduces Cd accumulation in rice (Oryza sativa L.).

Plant Physiol Biochem

August 2025

College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China. Electronic address:

Rice (Oryza sativa L.) is one of the most important food crops worldwide, with a strong capacity for Cd accumulation. Cd accumulation in rice is regulated by multiple genes.

View Article and Find Full Text PDF