Therapeutic potential of natural flavonoids in atherosclerosis through endothelium-protective mechanisms: An update.

Pharmacol Ther

Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA. Electronic address:

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Atherosclerosis and its associated cardiovascular complications remain significant global public health challenges, underscoring the urgent need for effective therapeutic strategies. Endothelial cells are critical for maintaining vascular health and homeostasis, and their dysfunction is a key contributor to the initiation and progression of atherosclerosis. Targeting endothelial dysfunction has, therefore, emerged as a promising approach for the prevention and management of atherosclerosis. Among natural products, flavonoids, a diverse class of plant-derived phenolic compounds, have garnered significant attention for their anti-atherosclerotic properties. A growing body of evidence demonstrates that flavonoids can mitigate endothelial dysfunction, highlighting their potential as endothelial dysfunction-targeted therapeutics for atherosclerosis. In this review, we summarize current knowledge on the roles of natural flavonoids in modulating various aspects of endothelial dysfunction and their therapeutic effects on atherosclerosis, focusing on the underlying molecular mechanisms. We also discuss the challenges and future prospects of translating natural flavonoids into clinical applications for cardiovascular medicine. This review aims to provide critical insights to advance the development of novel endothelium-protective pharmacotherapies for atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharmthera.2025.108864DOI Listing

Publication Analysis

Top Keywords

natural flavonoids
12
endothelial dysfunction
12
atherosclerosis
7
flavonoids
5
endothelial
5
therapeutic potential
4
natural
4
potential natural
4
flavonoids atherosclerosis
4
atherosclerosis endothelium-protective
4

Similar Publications

Ferroptosis, a controlled cell death influenced by iron-dependent lipid peroxidation, presents potential therapeutic targets for cancer treatment due to its unique molecular pathways and potential drug resistance. Natural compounds, such as polyphenols, flavonoids, terpenoids and alkaloids, can influence ferroptosis via important signalling pathways, such as Nrf2/Keap1, p53, and GPX4. These are promising for combinational therapy due to their ability to cause ferroptotic death in cancer cells, exhibit tumour-specific selectivity and reduce systemic toxicity.

View Article and Find Full Text PDF

The regulation of photoperiod and light intensity significantly affected Agastache rugosa by enhancing growth, modifying flowering dynamics, and promoting the accumulation of key phenolic compounds. Agastache rugosa is a medicinal and aromatic plant valued for its bioactive compounds, which contribute to its application in the flavoring, perfume, and food industries. However, variability in the composition of the bioactive compounds poses challenges for its commercial utilization.

View Article and Find Full Text PDF

Applying natural product repurposing strategy to identify baicalein as novel caseinolytic protease P inhibitor and its application in the treatment of rice bacterial diseases.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:

Plant diseases caused by bacteria affect the yield of crop, greatly reduce the quality of food, and thus posing a great threat to food safety. To fill the gap that no report about ClpP inhibitor is applied in agri-food production field, engineering natural-product repurposing strategy, 55 of natural products were screened using the combination of ClpP inhibitors of Xanthomonas oryzae pv. oryzae (Xoo) screening assay and anti-Xoo activity experiment.

View Article and Find Full Text PDF

Genistein: A promising botanical fungicide candidate for enhancing tomato yield and quality by controlling Alternaria solani.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:

The overreliance on traditional chemical fungicides, combined with the emergence of resistance, poses significant challenges for food safety. Early blight, caused by the fungal pathogen Alternaria solani (A. solani), is among the most significant contributors to pre- and postharvest yield losses in tomato cultivation.

View Article and Find Full Text PDF

Cyanidin 3-O-glucoside and other anthocyanins affect enniatins production in Fusarium avenaceum.

Fungal Biol

October 2025

University of Tuscia, Department of Agriculture and Forest Sciences (DAFNE), Via San Camillo de Lellis SNC, Viterbo, Italy.

Fusarium Head Blight (FHB), caused by various Fusarium species, is a major threat to global cereal production. F. avenaceum is an important FHB pathogen producing enniatin mycotoxins.

View Article and Find Full Text PDF