98%
921
2 minutes
20
Riboswitches are a class of noncoding RNA structures that interact with target ligands to cause a conformational change that can then execute some regulatory purpose within the cell. Riboswitches are ubiquitous and well characterized in bacteria and prokaryotes, with additional examples also being found in fungi, plants, and yeast. To date, no purely RNA-small molecule riboswitch has been discovered in Homo Sapiens. Several analogous riboswitch-like mechanisms have been described within the H. Sapiens translatome within the past decade, prompting the question: Is there a H. Sapiens riboswitch dependent on only small molecule ligands? In this work, we set out to train positive unlabeled machine learning classifiers on known riboswitch sequences and apply the classifiers to H. Sapiens mRNA 5'UTR sequences found in the 5'UTR database, UTRdb, in the hope of identifying a set of mRNAs to investigate for riboswitch functionality. 67,683 riboswitch sequences were obtained from RNAcentral and sorted for ligand type and used as positive examples and 48,031 5'UTR sequences were used as unlabeled, unknown examples. Positive examples were sorted by ligand, and 20 positive-unlabeled classifiers were trained on sequence and secondary structure features while withholding one or two ligand classes. Cross validation was then performed on the withheld ligand sets to obtain a validation accuracy range of 75%-99%. The joint sets of 5'UTRs identified as potential riboswitches by the 20 classifiers were then analyzed. 1533 sequences were identified as a riboswitch by one or more classifier(s) and 436 of the H. Sapiens 5'UTRs were labeled as harboring potential riboswitch elements by all 20 classifiers. These 436 sequences were mapped back to the most similar riboswitches within the positive data and examined. An online database of identified and ranked 5'UTRs, their features, and their most similar matches to known riboswitches, is provided to guide future experimental efforts to identify H. Sapiens riboswitches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021280 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0320282 | PLOS |
Nucleic Acids Res
September 2025
School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, No. 100 Waihuanxi Road, Guangzhou 510006, China.
The 5' untranslated region (5'UTR) plays a crucial regulatory role in messenger RNA (mRNA), with modified 5'UTRs extensively utilized in vaccine production, gene therapy, etc. Nevertheless, manually optimizing 5'UTRs may encounter difficulties in balancing the effects of various cis-elements. Consequently, multiple 5'UTR libraries have been created, and machine learning models have been employed to analyze and predict translation efficiency (TE) and protein expression, providing insights into critical regulatory features.
View Article and Find Full Text PDFBiophys J
September 2025
Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, Alberta, Canada; Department of Microbiology, Immunology
The dengue virus (DENV) poses a significant threat to human health, accounting for approximately 400 million infections each year. Its genome features a circular structure that facilitates replication through long-range RNA-RNA interactions, utilizing cyclization sequences located in the untranslated regions (UTRs). To gain new insights into the organization of the DENV genome, we purified the 5' and 3' UTRs of DENV in vitro and examined their structural and binding properties using various biophysical techniques combined with computational methods.
View Article and Find Full Text PDFBiochem Pharmacol
August 2025
Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, PR China. Electronic address:
Glioblastoma (GBM) is the most aggressive type of primary intracranial tumor. Circular RNAs (circRNAs) are closely related to the malignant progression of GBM. Elevated levels of Circular RNA hsa_circ_0002346 (circCRIM1) significantly correlate with tumor growth, metastasis, and poor prognosis, suggesting its potential as a biomarker for cancer diagnosis and treatment response.
View Article and Find Full Text PDFNat Commun
August 2025
Translational Control and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Mitosis is a critical phase of the cell cycle and a vulnerable point where cancer cells can be disrupted, causing cell death and inhibiting tumor growth. Challenges such as drug resistance persist in clinical applications. During mitosis, mRNA translation is generally downregulated, while non-canonical translation of specific transcripts continues.
View Article and Find Full Text PDFHum Genet
August 2025
Research Centre for Medical Genetics, Moscow, Russia.
Familial hypercholesterolemia (FH) is a genetic disorder characterized by elevated low-density lipoprotein (LDL) levels, leading to early-onset cardiovascular disease. FH is primarily caused by pathogenic variants in the LDLR gene, affecting cholesterol metabolism. We describe a family with a mild form of FH, in which gene panel sequencing identified a novel c.
View Article and Find Full Text PDF