98%
921
2 minutes
20
Esophageal squamous cell carcinoma (ESCC) remains a serious health concern due to its high prevalence and mortality rates. Identifying prognostic biomarkers is essential to improving patient outcomes and treatment strategies. DOCK9, a gene implicated in various cellular functions, may play a significant role in ESCC progression and prognosis. We analyzed RNA microarray datasets and single-cell RNA sequencing data to identify survival-associated genes in ESCC. Using protein expression analysis, we examined DOCK9 in ESCC tissues and assessed its functional impact on human umbilical vein endothelial cells to understand its role in angiogenesis. Additionally, we developed a 21-gene prognostic risk model, focusing on the relevance of DOCK9. Our findings revealed that DOCK9 expression is significantly reduced in ESCC tissues and correlates with poor survival outcomes. Functionally, DOCK9 was found to regulate angiogenesis and modulate the tumor-associated fibroblast environment in ESCC. Furthermore, the DOCK9/CD31 ratio emerged as a potential marker to predict immune therapy response in ESCC. DOCK9 serves as a prognostic biomarker in ESCC, influencing both angiogenesis and immune response, and could guide future therapeutic strategies, particularly in immunotherapy. This study highlights DOCK9's relevance in ESCC prognosis, supporting its potential role in tailored therapies aimed at angiogenesis and immune modulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021961 | PMC |
http://dx.doi.org/10.1007/s10238-025-01653-8 | DOI Listing |
Front Immunol
September 2025
Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
Cancer is a multifaceted disease driven by a complex interplay of genetic predisposition, environmental factors and lifestyle habits. With the accelerating pace of cancer research, the gut microbiome has emerged as a critical modulator of human health and immunity. Disruption in the gut microbial populations and diversity, known as dysbiosis, has been linked with the development of chronic inflammation, oncogenesis, angiogenesis and metastasis.
View Article and Find Full Text PDFMater Today Bio
October 2025
Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, PR China.
Organ transplantation faces critical challenges, including donor shortages, suboptimal preservation, ischemia-reperfusion injury (IRI), and immune rejection. Nanotechnology offers transformative solutions by leveraging precision-engineered materials to enhance graft viability and outcomes. This review highlights nanomaterials' roles in revolutionizing organ preservation.
View Article and Find Full Text PDFWound Repair Regen
September 2025
Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
This study aimed to develop an acellular dermal matrix derived from tilapia skin and evaluate its potential as a bioscaffold for skin wound repair. Structural and compositional changes before and after decellularisation were assessed through histological staining, electron microscopy and immunological analysis. The matrix exhibited low immunogenicity, preserved extracellular matrix architecture and retained key bioactive components.
View Article and Find Full Text PDFDiagn Pathol
September 2025
Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.
View Article and Find Full Text PDFAnim Reprod Sci
September 2025
Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.
Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.
View Article and Find Full Text PDF