98%
921
2 minutes
20
This study systematically investigates the synergistic effects of Cu addition (0-0.7 wt.%) and 2% pre-straining on the artificial aging, natural aging (NA), and bake-hardening response (BHR) of AA6111 alloy. The results reveal that Cu significantly enhances age-hardening capacity and accelerates artificial aging kinetics. The 0.7Cu alloy achieved a 14% higher peak hardness (106.9 HV) than the Cu-free alloy (93.8 HV) while reducing peak aging time by 50% (from 10 h to 5 h). Pre-straining further promoted hardening rates, shortening peak aging times to 2 h for the 0.7Cu alloy. Natural aging (NA) severely suppressed BHR in non-pre-strained alloys, reducing paint baking (PB) increments by 75-77.5% after 14 days. However, the introduction of pre-straining not only reduces the negative effects of NA but also improves the BHR. TEM analysis demonstrated that Cu addition accelerated the precipitation of fine GP zones and β″ phases while pre-straining introduced dislocations that acted as heterogeneous nucleation sites for Q' phases, refining precipitates and suppressing NA cluster formation. The synergistic combination of 0.7Cu and pre-straining achieved a superior BHR yield strength increment of 68.1 MPa with retained ductility, highlighting its potential for automotive applications requiring balanced formability and post-forming strength.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11990626 | PMC |
http://dx.doi.org/10.3390/ma18071635 | DOI Listing |
J Med Microbiol
September 2025
Alberta Precision Laboratories Public Health Lab, Edmonton, Alberta, Canada.
For thousands of years, parasitic infections have represented a constant challenge to human health. Despite constant progress in science and medicine, the challenge has remained mostly unchanged over the years, partly due to the vast complexity of the host-parasite-environment relationships. Over the last century, our approaches to these challenges have evolved through considerable advances in science and technology, offering new and better solutions.
View Article and Find Full Text PDFElife
September 2025
Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Immunogenic cell death (ICD) is a type of cell death sparking adaptive immune responses that can reshape the tumor microenvironment. Exploring key ICD-related genes in bladder cancer (BLCA) could enhance personalized treatment. The Cancer Genome Atlas (TCGA) BLCA patients were divided into two ICD subtypes: ICD-high and ICD-low.
View Article and Find Full Text PDFAust J Rural Health
October 2025
AgHealth Australia, School of Rural Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
Objective: To describe the pattern and estimated direct economic burdens associated with unintentional deaths and injuries on Australian farms over the past 11 years (2013-2023).
Design: Descriptive retrospective epidemiological study of National Coronial Information System (NCIS) data for persons fatally injured on a farm and workers' compensation injuries data from the National Data Set.
Setting: Australia.
Small
September 2025
State Key Laboratory of Functional Materials and Devices for Special Environments Conditions, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry of CAS, Urumqi, 830011, P. R. China.
Owing to its wide bandgap, LaAlO has garnered extensive attention in the field of high-temperature negative temperature coefficient (NTC) thermistors. However, its poor thermal stability and excessively high B value limit the working temperature range. In this work, introducing O 2p and Ni 3d hybrid energy levels into the bandgap is proposed via Ni doping and inducing stacking faults in the crystal structure to narrow the bandgap and enhance aging performance.
View Article and Find Full Text PDFJ Cell Physiol
September 2025
Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Ovarian granulosa cells (GCs) are pivotal for follicular homeostasis, and their dysregulated apoptosis drives age-related ovarian aging. The Hippo signaling pathway, modulated by long noncoding RNAs (lncRNAs), is implicated in regulating GCs proliferation and ovarian aging. TEAD2 (Transcriptional Enhanced Associate Domain 2), a key downstream transcription factor of the Hippo signaling pathway, plays a critical role in regulating cell proliferation, apoptosis, and embryonic stem cell self-renewal.
View Article and Find Full Text PDF