A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A recognition model for winter peach fruits based on improved ResNet and multi-scale feature fusion. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the continuous advancement of modern agricultural technologies, the demand for precision fruit-picking techniques has been increasing. This study addresses the challenge of accurate recognition and harvesting of winter peaches by proposing a novel recognition model based on the residual network (ResNet) architecture-WinterPeachNet-aimed at enhancing the accuracy and efficiency of winter peach detection, even in resource-constrained environments. The WinterPeachNet model achieves a comprehensive improvement in network performance by integrating depthwise separable inverted bottleneck ResNet (DIBResNet), bidirectional feature pyramid network (BiFPN) structure, GhostConv module, and the YOLOv11 detection head (v11detect). The DIBResNet module, based on the ResNet architecture, introduces an inverted bottleneck structure and depthwise separable convolution technology, enhancing the depth and quality of feature extraction while effectively reducing the model's computational complexity. The GhostConv module further improves detection accuracy by reducing the number of convolution kernels. Additionally, the BiFPN structure strengthens the model's ability to detect objects of different sizes by fusing multi-scale feature information. The introduction of v11detect further optimizes object localization accuracy. The results show that the WinterPeachNet model achieves excellent performance in the winter peach detection task, with P = 0.996, R = 0.996, mAP50 = 0.995, and mAP50-95 = 0.964, demonstrating the model's efficiency and accuracy in the winter peach detection task. The high efficiency of the WinterPeachNet model makes it highly adaptable in resource-constrained environments, enabling effective object detection at a relatively low computational cost.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014684PMC
http://dx.doi.org/10.3389/fpls.2025.1545216DOI Listing

Publication Analysis

Top Keywords

winter peach
16
peach detection
12
winterpeachnet model
12
recognition model
8
multi-scale feature
8
resource-constrained environments
8
model achieves
8
depthwise separable
8
inverted bottleneck
8
bifpn structure
8

Similar Publications