Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
With the continuous advancement of modern agricultural technologies, the demand for precision fruit-picking techniques has been increasing. This study addresses the challenge of accurate recognition and harvesting of winter peaches by proposing a novel recognition model based on the residual network (ResNet) architecture-WinterPeachNet-aimed at enhancing the accuracy and efficiency of winter peach detection, even in resource-constrained environments. The WinterPeachNet model achieves a comprehensive improvement in network performance by integrating depthwise separable inverted bottleneck ResNet (DIBResNet), bidirectional feature pyramid network (BiFPN) structure, GhostConv module, and the YOLOv11 detection head (v11detect). The DIBResNet module, based on the ResNet architecture, introduces an inverted bottleneck structure and depthwise separable convolution technology, enhancing the depth and quality of feature extraction while effectively reducing the model's computational complexity. The GhostConv module further improves detection accuracy by reducing the number of convolution kernels. Additionally, the BiFPN structure strengthens the model's ability to detect objects of different sizes by fusing multi-scale feature information. The introduction of v11detect further optimizes object localization accuracy. The results show that the WinterPeachNet model achieves excellent performance in the winter peach detection task, with P = 0.996, R = 0.996, mAP50 = 0.995, and mAP50-95 = 0.964, demonstrating the model's efficiency and accuracy in the winter peach detection task. The high efficiency of the WinterPeachNet model makes it highly adaptable in resource-constrained environments, enabling effective object detection at a relatively low computational cost.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014684 | PMC |
http://dx.doi.org/10.3389/fpls.2025.1545216 | DOI Listing |