A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Advanced development of conductive biomaterials for enhanced peripheral nerve regeneration: a review. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Peripheral nerve injury (PNI), as a major cause of disability worldwide, makes it difficult to achieve effective repair and regeneration. Including autologous nerve transplantation, traditional therapies are restricted by surgical intricacy, donor scarcity, and inconsistent recovery effects. As to nerve guidance conduits (NGCs), conductive materials have brought novel pathways for PNI repair. Such materials boost nerve regeneration electrical stimulation and bring key mechanical stability and biophysical signaling. This review summarizes the progress in conductive materials for PNI therapy while emphasizing their functions in electrical stimulation (ES), bioelectric signal transmission, and cell behavior guidance, as well as revealing the design and function needs of nerve conduits. Additionally, our review highlights the demand for follow-up studies to accentuate material optimization and improve real-time electrical signal supervision. Accordingly, this research is insightful and contributes to developing PNI repair. This results in more efficacious therapies and enhanced outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12013703PMC
http://dx.doi.org/10.1039/d5ra01107hDOI Listing

Publication Analysis

Top Keywords

peripheral nerve
8
nerve regeneration
8
conductive materials
8
pni repair
8
electrical stimulation
8
nerve
6
advanced development
4
development conductive
4
conductive biomaterials
4
biomaterials enhanced
4

Similar Publications