Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Feature extraction follows the American Academy of Sleep Medicine (AASM) sleep score manually and applies it to machine learning with a focus on the generalization of sleep data to enable data-centric artificial intelligence. In real-world clinical testing, the manual scoring of sleep stages is time-consuming and requires significant expertise. Additionally, it is subject to interobserver subjective bias. Machine-learning techniques offer a way to overcome these limitations through automation. However, machine learning for sleep phase prediction can perform poorly for small classes. If the distribution of the training data was unbalanced, the model was trained with a bias toward the majority class. To address this, we experimented with loss function adjustment and resampling methods that assign more weight to the prediction errors of minority classes in sleep scoring to determine how to overcome the data imbalance problem. Machine learning can also be used to compare the accuracy of each channel in identifying electrodes, which should be monitored more closely in real-world clinical testing. Owing to the small amount of data available for machine learning in this study, we used various machine learning classifiers by increasing or decreasing the dataset using sampling techniques and weighting different classes of sleep stages. In our experiments, the best-performing model for classifying sleep stages had an accuracy of 91.9%, kappa of 0.899, and F1-score of 86.9%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011700PMC
http://dx.doi.org/10.1007/s13534-025-00466-8DOI Listing

Publication Analysis

Top Keywords

machine learning
24
sleep stages
12
sleep
10
real-world clinical
8
clinical testing
8
classes sleep
8
machine
6
learning
5
learning classifier
4
classifier solving
4

Similar Publications

Preclinical stroke research faces a critical translational gap, with animal studies failing to reliably predict clinical efficacy. To address this, the field is moving toward rigorous, multicenter preclinical randomized controlled trials (mpRCTs) that mimic phase 3 clinical trials in several key components. This collective statement, derived from experts involved in mpRCTs, outlines considerations for designing and executing such trials.

View Article and Find Full Text PDF

Background: Subcellular localisation is a determining factor of protein function. Mass spectrometry-based correlation profiling experiments facilitate the classification of protein subcellular localisation on a proteome-wide scale. In turn, static localisations can be compared across conditions to identify differential protein localisation events.

View Article and Find Full Text PDF

To address the technical challenges associated with determining the chronological order of overlapping stamps and textual content in forensic document examination, this study proposes a novel non-destructive method that integrates hyperspectral imaging (HSI) with convolutional neural networks (CNNs). A multi-type cross-sequence dataset was constructed, comprising 60 samples of handwriting-stamp sequences and 20 samples of printed text-stamp sequences, all subjected to six months of natural aging. Spectral responses were collected across the 400-1000 nm range in the overlapping regions.

View Article and Find Full Text PDF

Oral cancer is a major global health burden, ranking sixth in prevalence, with oral squamous cell carcinoma (OSCC) being the most common type. Importantly, OSCC is often diagnosed at late stages, underscoring the need for innovative methods for early detection. The oral microbiome, an active microbial community within the oral cavity, holds promise as a biomarker for the prediction and progression of cancer.

View Article and Find Full Text PDF

Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).

View Article and Find Full Text PDF