Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Antigen escape relapse is a major challenge in targeted immunotherapies, including CD19- and CD22-directed chimeric antigen receptor (CAR) T-cell for B-cell acute lymphoblastic leukemia (B-ALL). To identify tumor-intrinsic factors driving antigen loss, we perform single-cell analyses on 61 B-ALL patient samples treated with CAR T cells. Here we show that low levels of IKAROS in pro-B-like B-ALL cells before CAR T treatment correlate with antigen escape. IKAROS B-ALL cells undergo epigenetic and transcriptional changes that diminish B-cell identity, making them resemble progenitor cells. This shift leads to reduced CD19 and CD22 surface expression. We demonstrate that CD19 and CD22 expression is IKAROS dose-dependent and reversible. Furthermore, IKAROS cells exhibit higher resistance to CD19- and CD22-targeted therapies. These findings establish a role for IKAROS as a regulator of antigens targeted by widely used immunotherapies and in the risk of antigen escape relapse, identifying it as a potential prognostic target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12019336PMC
http://dx.doi.org/10.1038/s41467-025-58868-2DOI Listing

Publication Analysis

Top Keywords

antigen escape
16
cd19- cd22-targeted
8
cd22-targeted therapies
8
escape relapse
8
targeted immunotherapies
8
b-all cells
8
cd19 cd22
8
ikaros
6
antigen
6
cells
5

Similar Publications

Nuclear glycine decarboxylase suppresses STAT1-dependent MHC-I and promotes cancer immune evasion.

EMBO J

September 2025

Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences; Wuhan University, Wuhan, 430071, China.

Inadequate antigen presentation by MHC-I in tumor microenvironment (TME) is a common immune escape mechanism. Here, we show that glycine decarboxylase (GLDC), a key enzyme in glycine metabolism, functions as an inhibitor of MHC-I expression in EGFR-activated tumor cells to induce immune escape by a mechanism independent of its enzymatic activity. Upon EGFR activation, GLDC is phosphorylated by SRC and subsequently translocated to the nucleus in human NSCLC cells.

View Article and Find Full Text PDF

CpG ODN Combined with Gold Nanorods Enhances Immune Activation and Its Potential Mechanism.

J Inflamm Res

September 2025

Department of the Head and Neck, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, People's Republic of China.

Background: Immune escape of tumor cells is a common problem with tumor photothermal therapy utilizing gold nanorods (Au NRs). Whether CpG ODN, an immune adjuvant, can synergize with Au NRs to activate the immune response and its potential mechanism is not clear.

Methods: The effect of Au NRs combined with CpG ODN (Au NRs-C) on the activity of various immune-related cells, such as double-positive T cells, macrophages, NK cells, Th17, and Treg.

View Article and Find Full Text PDF

The presentation of peptides on HLA molecules is essential to CD8 T cell responses. Here, we show that loss of uL14 significantly downregulates the expression of antigen processing and presentation (APP) components in melanoma cell lines. Peptides generated following knockdown show different characteristics, with altered peptide charge, and differences in anchor residue positions.

View Article and Find Full Text PDF

Advances in Tumor Microenvironment and Immunotherapeutic Strategies for Hepatocellular Carcinoma.

Oncol Res

September 2025

Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.

Hepatocellular carcinoma (HCC) is a highly aggressive malignancy, largely driven by an immunosuppressive tumor microenvironment (TME) that facilitates tumor growth, immune escape, and resistance to therapy. Although immunotherapy-particularly immune checkpoint inhibitors (ICIs)-has transformed the therapeutic landscape by restoring T cell-mediated anti-tumor responses, their clinical benefit as monotherapy remains suboptimal. This limitation is primarily attributed to immunosuppressive components within the TME, including tumor-associated macrophages, regulatory T cells (Tregs), and myeloid-derived suppressor cells (MDSCs).

View Article and Find Full Text PDF

Cancer vaccines in hematologic malignancy: A systematic review of the rational and evidence for clinical use.

Best Pract Res Clin Haematol

September 2025

Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, USA.

Immunotherapy, including immune checkpoint blockade, CART cells and bispecific antibodies have resulted in dramatic improvements in outcomes for patients with hematological malignancies, demonstrating the unique potency of the immune system in targeting malignant cells. The development of cancer vaccines aims to evoke an activated effector cell population and a memory response to provide long term immune surveillance to protect from relapse. Developing a potent cancer vaccine relies on identifying appropriate antigen targets, enhancing antigen presentation, and overcoming the immune suppressive milieu of the micro-environment.

View Article and Find Full Text PDF