Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biological interactions between RNA and small-molecule ligands play a crucial role in determining the specific functions of RNA, such as catalysis and folding, and are essential for guiding drug design in the medical field. Accurately predicting the binding sites of ligands within RNA structures is therefore of significant importance. To address this challenge, we introduced a computational approach named RLBSIF (RNA-Ligand Binding Surface Interaction Fingerprints) based on geometric deep learning. This model utilizes surface geometric features, including shape index and distance-dependent curvature, combined with chemical features represented by atomic charge, to comprehensively characterize RNA-ligand interactions through MaSIF-based surface interaction fingerprints. Additionally, we employ the ResNet18 network to analyze these fingerprints for identifying ligand binding pockets. Trained on 440 binding pockets, RLBSIF achieves an overall pocket-level classification accuracy of 90 %. Through a full-space enumeration method, it can predict binding sites at nucleotide resolution. In two independent tests, RLBSIF outperformed competing models, demonstrating its efficacy in accurately identifying binding sites within complex molecular structures. This method shows promise for drug design and biological product development, providing valuable insights into RNA-ligand interactions and facilitating the design of novel therapeutic interventions. For access to the related source code, please visit RLBSIF on GitHub (https://github.com/ZUSTSTTLAB/RLBSIF).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.143308DOI Listing

Publication Analysis

Top Keywords

binding sites
16
rna structures
8
based geometric
8
geometric deep
8
deep learning
8
drug design
8
surface interaction
8
interaction fingerprints
8
rna-ligand interactions
8
binding pockets
8

Similar Publications

β-Adrenergic Receptors - Not Always Outside-In.

Physiology (Bethesda)

September 2025

Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304.

Canonical activation of G-protein coupled receptors (GPCRs) by hormone binding occurs at the plasma membrane, resulting in the diffusion of second messengers to intracellular effector sites throughout the cell. In contrast, recent evidence suggests that functional GPCRs can induce signaling from distinct intracellular domains, contributing to specificity in signaling. Functional adrenergic receptors have been identified at intracellular sites in the cardiac myocyte such as endosomes, the sarcoplasmic reticulum, the Golgi and the inner nuclear membrane.

View Article and Find Full Text PDF

Integrins bind ligands between their alpha (α) and beta (β) subunits and transmit signals through conformational changes. Early in chordate evolution, some α subunits acquired an "inserted" (I) domain that expanded integrin's ligand-binding repertoire but obstructed the ancestral ligand pocket, seemingly blocking conventional integrin activation. Here, we compare cryo-electron microscopy structures of apo and ligand-bound states of the I domain-containing αEβ integrin and the I domain-lacking αβ integrin to illuminate how the I domain intrinsically mimics an extrinsic ligand to preserve integrin function.

View Article and Find Full Text PDF

Binding of autotransporter adhesin CbpF to human CEACAM1 and CEACAM5: A Velcro model for bacterium adhesion.

Proc Natl Acad Sci U S A

September 2025

Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.

In eukaryotic systems, three major types of cell junctions have been well characterized. While bacterial adhesion mechanisms also exhibit remarkable diversity, the molecular processes that regulate the dynamic modulation of binding strength between elongated bacterial cells and host cells remain poorly understood. () utilizes the surface adhesin CbpF to interact with the highly expressed host receptors CEACAM1 and CEACAM5 on cancer cells to facilitate tumor colonization.

View Article and Find Full Text PDF

Roles of Extracellular Superoxide Dismutase in Regulating Cell Migration and Vesicle Trafficking in Dictyostelium and Mammalian Cells.

Dev Growth Differ

September 2025

Department of Biological Sciences, College of Arts, Sciences, and Education, Florida International University, Miami, Florida, USA.

Superoxide dismutases (SODs) are key regulators of reactive oxygen species (ROS) and redox balance. Although intracellular SODs have been extensively studied, growing attention has been directed toward understanding the roles of extracellular SODs in both Dictyostelium and mammalian systems. In Dictyostelium discoideum, SodC is a glycosylphosphatidylinositol (GPI)-anchored enzyme that modulates extracellular superoxide to regulate Ras, PI3K signaling, and cytoskeletal remodeling during directional cell migration.

View Article and Find Full Text PDF

The microglial surface protein Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) plays a critical role in mediating brain homeostasis and inflammatory responses in Alzheimer's disease (AD). The soluble form of TREM2 (sTREM2) exhibits neuroprotective effects in AD, though the underlying mechanisms remain elusive. Moreover, differences in ligand binding between TREM2 and sTREM2, which have major implications for their roles in AD pathology, remain unexplained.

View Article and Find Full Text PDF