Household-Level Variability of Nontarget Analytical Results for Drinking Water Provides a Tool for Uncovering Constituents Introduced by Distribution System Components.

Environ Sci Technol

Department of Civil and Environmental Engineering, University of California, One Shields Ave., Davis, California 95616, United States.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The variability in the nontarget chemical composition of tap water from 120 households and 15 brands of retail water was analyzed during two seasons. Fifteen households in eight separate community water systems were evaluated with the goal of identifying compounds with high within-source variability and investigating potential origins of the observed variation. High resolution mass spectrometry with liquid and gas chromatography was implemented and 10 chemical features from each water system with the highest coefficient of variation and a tentative library match were prioritized for investigation. This prioritization filter reduced the number of considered features from the 16,929 originally isolated to 282. High confidence structural annotations could be assigned to 134 compounds, which were then categorized based on plausible contaminant inputs. The most common source category was plastic (potentially originating from piping, fittings or packaging), with 47/50 of the GC compounds and 22/40 of the LC compounds having possible plastic-related origins. Other important source categories included other distribution system components (polychlorinated biphenyls, historically used in caulking), disinfection byproducts (trihalomethanes), and contaminants present in source waters at varying levels (sucralose, PFAS). The findings highlight the diverse constituents introduced into drinking water from the distribution system and the importance of assessing chemical exposures via drinking water at the point of use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12060269PMC
http://dx.doi.org/10.1021/acs.est.4c14749DOI Listing

Publication Analysis

Top Keywords

drinking water
12
distribution system
12
variability nontarget
8
constituents introduced
8
system components
8
water
7
household-level variability
4
nontarget analytical
4
analytical drinking
4
water tool
4

Similar Publications

The consumption of water of low microbiological quality can be detrimental and may cause significant health issues. Thus, amplicon sequencing can be an advantageous method to observe bacterial diversity in water. This study aimed to understand the complex bacterial communities present in natural mineral water packaged in 20 L returnable containers through amplicon sequencing.

View Article and Find Full Text PDF

Optimization and application of pretreatment for the analysis of typical per- and polyfluoroalkyl substances (PFAAs) in drinking water: a systematic evaluation of filter membranes and SPE Sorbents.

Anal Sci

September 2025

Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China.

The accurate detection of trace perfluoroalkyl acids (PFAAs) in drinking water remains challenging due to nonspecific adsorption losses during pretreatment. This study systematically evaluated the adsorption behaviors of 11 PFAAs across five filtration membranes and four solid-phase extraction (SPE) sorbents to establish an optimized analytical protocol. Results demonstrated that glass fiber (GL) filters minimized PFAAs retention (94.

View Article and Find Full Text PDF

Objective: The study aims to assess the magnitude of acute gastroenteritis and associated factors among under-five children visiting public hospitals in Jigjiga City, Somali Region, Ethiopia.

Design: A hospital-based cross-sectional study design was used to carry out the study. We then employed a systematic random sampling technique through face-to-face interviews to gather the data.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) are environmentally persistent, bioaccumulative, and toxic chemicals that contaminate global drinking water resources. Their ubiquity and potential impact on human health motivate large-scale remediation. Conventional materials used to remove PFASs during drinking water production are functionally inefficient or energetically expensive, motivating the discovery of new materials and technologies.

View Article and Find Full Text PDF

Are Clouds a Neglected Reservoir of Pesticides?

Environ Sci Technol

September 2025

Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, UMR 6296, Clermont-Ferrand 63000, France.

Pesticide contamination is a growing and alarming concern for both the environment and human health. Widely used in agriculture to control pests and disease carriers, pesticides undergo extensive long-range atmospheric transport in the gas phase, in aerosols, and, as shown here, in clouds. We measured the concentration of 32 pesticides at the puy de Dôme observatory (France) in the sub μg L to μg L range in cloud water, largely arising from regional to long-range transport that also involves pesticides currently banned for agricultural use in France.

View Article and Find Full Text PDF