Infection Affects the Growth and Development of by Disrupting Energy Metabolism and Reproductive Processes.

Insects

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For instance, is involved in numerous life processes of and exerts a significant influence on its physiological indicators. The results demonstrate that infection disturbs the normal growth and development of , resulting in a substantial reduction in the number of offspring. Compared with the uninfected control group, the innate rate of increase and the endogenous growth rate are markedly lower. Moreover, RNA-sequencing revealed that genes related to energy synthesis and nutrient metabolism were significantly upregulated in infected with . Simultaneously, the infection led to a significant downregulation of genes related to alkaline phosphatase in the folate-synthesis pathway and histone proteinase B synthesis in the metabolism pathway of . These experimental findings indicate that infection disrupts the growth and development of , specifically manifested as a significant upregulation of genes related to energy synthesis and nutrient metabolism and a downregulation of genes related to reproduction. Overall, these results offer support for the study of the interactions between aphids and symbiotic bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943051PMC
http://dx.doi.org/10.3390/insects16030238DOI Listing

Publication Analysis

Top Keywords

growth development
12
genes energy
8
energy synthesis
8
synthesis nutrient
8
nutrient metabolism
8
downregulation genes
8
infection
4
infection growth
4
development disrupting
4
disrupting energy
4

Similar Publications

Background: The aim of this study was to establish a rat model of premature ovarian failure (POF) with cyclophosphamide (CTX), and explore the molecular basis of POF and the mechanism of Guishen-Erxian Decoction (GSEXD) to improve POF from the perspective of oxidative stress regulation of ovarian granulosa cell (OGC) DNA fragmentation.

Method: The study utilized SD rats to establish a POF model via CTX. Rats were divided into Control, POF group, three GSEXD dosage groups (low, medium, high), and a GSEXD+PI3K agonist group to assess GSEXD's therapeutic effects on oxidative stress, DNA fragmentation and ovarian damage.

View Article and Find Full Text PDF

Crop growth rate is a critical physiological trait for forage and bioenergy crops like sorghum [Sorghum bicolor (L.) Moench], influencing overall crop productivity, particularly in photoperiod-sensitive (PS) types. Crop growth rate studies focus on either a physiological approach utilizing a few genotypes to analyze biomass accumulation or a genetic approach characterizing easily scorable proxy traits in larger populations.

View Article and Find Full Text PDF

Optimization of Nitrogen Application and Root Biomass Modulates 2-Acetyl-1-Pyrroline Biosynthesis in Fragrant Rice.

Physiol Plant

September 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China.

The rice root system mediates nutrient uptake while adapting to tillage, management, and environmental changes. While optimized nitrogen (N) supply is known to enhance 2-acetyl-1-pyrroline (2-AP) biosynthesis in fragrant rice, the underlying mechanisms linking nitrogen availability, root development, and their combined effects on physiological processes and aroma formation remain unclear. To address this knowledge gap, we conducted a pot experiment employing two fragrant rice cultivars (Huahangxiangyinzhen and Qingxiangyou19xiang) under three nitrogen regimes (0, 1.

View Article and Find Full Text PDF

Electrically Conductive Hydrogels for Wound Healing.

Adv Wound Care (New Rochelle)

September 2025

Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China.

Wound healing is a complex, tightly regulated process involving a range of enzymes, growth factors, and cytokines that coordinate cellular activities essential for tissue repair and wound closure. However, in cases of extensive or severe injury, the intrinsic repair mechanisms are often insufficient, underscoring the need for advanced therapeutic strategies to accelerate healing and minimize scar formation. Electrically conductive hydrogels (ECHs), combining the advantageous properties of hydrogels with the physiological and electrochemical characteristics of conductive materials, present a safer and more convenient alternative to traditional electrode-based electrical stimulation (ES) for treating chronic and nonhealing wounds.

View Article and Find Full Text PDF

Background: has been extensively studied for its bioactive components and medicinal properties. This study was carried out to evaluate the fermentation ability of 2.1 yeast to determine suitable fermentation conditions.

View Article and Find Full Text PDF