Integrating RNA Interference and Nanotechnology: A Transformative Approach in Plant Protection.

Plants (Basel)

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural S

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

RNA interference (RNAi) has emerged as a potent mechanism for combating pathogenic fungi and oomycetes over the past decades. It offers a promising gene-silencing approach by targeting crucial genes involved in diseases caused by economically and scientifically significant fungal pathogens, such as and species. Simultaneously, nano-agro-products have gained attention as alternatives to traditional fungicides in plant protection strategies. However, the instability of naked RNA molecules outside the cellular environment presents a challenge, as they degrade rapidly, limiting their efficacy for prolonged disease control. Concerns regarding the toxicity of protective nanoparticles to non-target organisms have also arisen. Integrating RNAi with nano-agro-products, particularly nanocarriers, to form RNA-nano complexes has demonstrated significant potential, providing enhanced RNA stability, reduced toxicity, and extended disease control. This review explores the mechanisms of RNA-nano complexes-mediated plant protection, addressing RNA stability and nano-toxicity issues while examining the prospects of RNA-nano complex research in plant pathogen management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946571PMC
http://dx.doi.org/10.3390/plants14060977DOI Listing

Publication Analysis

Top Keywords

plant protection
12
rna interference
8
disease control
8
rna stability
8
integrating rna
4
interference nanotechnology
4
nanotechnology transformative
4
transformative approach
4
plant
4
approach plant
4

Similar Publications

Strigolactones modulate jasmonate-dependent transcriptional reprogramming during wound signalling in Arabidopsis.

J Appl Genet

September 2025

Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032, Katowice, Poland.

Mechanical wounding triggers rapid transcriptional and hormonal reprogramming in plants, primarily driven by jasmonate (JA) signalling. While the role of JA, ethylene, and salicylic acid in wound responses is well characterised, the contribution of strigolactones (SLs) remains largely unexplored. Here, for the first time, it was shown that SLs modulate wound-induced transcriptional dynamics in Arabidopsis thaliana.

View Article and Find Full Text PDF

This study evaluated how dietary black seed oil (Nigella sativa L.) against the diazinon waterborne toxicity on Nile tilapia (Oreochromis niloticus), focusing on growth performance, hematological and biochemical parameters as well as oxidative stress markers and histological changes. A 40-day feeding trial was carried out using four experimental groups: Group 1 (control group), Group 2 (N.

View Article and Find Full Text PDF

Lutein is a plant pigment beneficial for eye health and for preventing retinal-related diseases. However, lutein is unstable, with low oral bioavailability. In this study, lutein fromwas loaded into cubosome lipid nanocarriers, both neutral (lutein-MO) and cationic (lutein-MO-DOTAP); the release, stability, and retinal penetration of the drug were improved.

View Article and Find Full Text PDF

From Barren Rock to Thriving Life: How Nitrogen Fuels Microbial Carbon Fixation in Deglaciated Landscapes.

Environ Sci Technol

September 2025

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.

Rapidly expanding nascent ecosystems at glacier forefields under climate warming dramatically enhance the terrestrial carbon (C) sink. Microbial C fixation and degradation, closely implicated in nitrogen (N) transformation and plant-soil-microbe interactions, significantly regulate soil C accumulation. However, how shifts in microbial functional potential impact soil C sequestration during vegetation succession remains unclear.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) in biosolid-amended soils can transfer and accumulate in crops, cattle, and people. Bioaccumulation factors (BAFs) are often applied to estimate the transfer of contaminants from soil to crops. However, they can vary widely and introduce uncertainty to exposure and risk estimates.

View Article and Find Full Text PDF