Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: Network is unreachable
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The MIKC-type MADS-box (MIKC) gene family is essential for controlling various plant developmental processes, including flowering time and dormancy transitions. Although the MIKC gene family has been widely studied across different plants, its characterization and functional study in herbaceous peony remain limited. In this study, 19 Pall. MIKC-type (PlMIKC) genes were identified from the transcriptome of a low-chilling requirement Pall. cultivar 'Hang Baishao'. These MIKC genes were categorized into seven clades: six were classified as MIKC-type, including FUL/AP1, DAM, PI, AGL18, AGL12, AG, and SOC1, and one, AGL30, was classified as MIKC*-type. Notably, the FLC clade genes were absent in Pall. The PlMIKC genes were predominantly localized to the nucleus, and their sequences contained highly conserved MADS and K-domains. Phylogenetic analysis demonstrated that PlMIKC genes share a strong evolutionary affinity with the MIKC genes from grapevine () and poplar (). A low-temperature-induced bud dormancy transition (BDT) experiment revealed that PlMIKC genes, such as and , were highly expressed during dormancy maintenance, while , , and were upregulated during BDT. Additionally, the transient overexpression of in 'Hang Baishao' significantly accelerated BDT and promoted bud break, suggesting that , traditionally linked to flowering regulation, also plays a key role in dormancy transition. Since limited literature on the MIKC gene family is currently available in herbaceous peony, this study expands the knowledge of the MIKC genes in Pall. and offers valuable insights into the molecular regulation of bud dormancy in response to low temperatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945514 | PMC |
http://dx.doi.org/10.3390/plants14060928 | DOI Listing |