98%
921
2 minutes
20
Arterial pulse wave measurement is beneficial in clinical health assessment and is important for effectively diagnosing different types of cardiovascular disease. Computational pulse signal analysis utilizes sensors and signal processing techniques to understand, classify, and predict disease pulse patterns. However, the choice of sensor types impacts the measurement results. This study presents the first comprehensive quantitative comparison of three sensor modalities (acoustic, optical, and pressure) for radial pulse measurement, employing a novel multi-parameter analysis framework that combines time-domain, frequency-domain, and PRV measures. Among various available types, three types of sensors are compared: an acoustic sensor, an optical sensor, and a pressure sensor. Pulse wave signals were recorded from the radial artery of 30 participants using these three sensors, and the performance was evaluated using various feature extraction methods like time domain, frequency domain and pulse rate variability (PRV) measures. Further, statistical analysis (ANOVA) of the PRV measures was carried out to compare the differences in the means of the various PRV measures. Time and frequency domain features varied across sensor types, but no statistical differences were found in PRV measures across sensors. Based on the experimental results, the pressure sensor was found to perform better in capturing comprehensive wrist pulse information. The research provides evidence-based guidelines for sensor selection in pulse wave analysis applications. The findings have direct applications in developing wearable cardiovascular monitoring devices, where sensor choice critically impacts device accuracy and reliability. and clinical settings requiring pulse wave analysis for cardiovascular disease diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12015581 | PMC |
http://dx.doi.org/10.1038/s41598-025-98488-w | DOI Listing |
J Chem Phys
September 2025
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India.
We introduce a novel method using a kilohertz (kHz) amplified 800 nm laser for the first experimental confinement of microparticles within a single beam. This study demonstrates that high-energy kHz pulses can confine 1-μm-radius polystyrene beads in water within ∼26 μm. This approach utilizes the unique properties of high-energy pulsed lasers, distinct from continuous-wave and megahertz pulsed lasers traditionally used in optical trapping.
View Article and Find Full Text PDFCardiol Rev
September 2025
From the Department of General Medicine, J.S.S. Medical College, JSS Academy of Higher Education and Research, Mysuru, India.
Heart failure with preserved ejection fraction (HFpEF) accounts for nearly half of all heart failure cases and is increasing in prevalence due to aging populations and comorbidities such as hypertension and diabetes. While echocardiography remains the diagnostic cornerstone, many patients with preserved ejection fraction present with nonspecific symptoms and ambiguous diastolic indices, leading to diagnostic uncertainty and therapeutic delay. Arterial stiffness-quantified by pulse wave velocity, augmentation index, and cardio-ankle vascular index)-is emerging as a key contributor to HFpEF pathophysiology.
View Article and Find Full Text PDFAm J Prev Cardiol
September 2025
Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA.
Background: In adults without cardiovascular disease (CVD), there is limited understanding of the association between overall cardiovascular health (CVH) and arterial health.
Methods: In 2330 Framingham Heart Study Offspring participants free of CVD (60±9 years; 57% women) with Life's Essential 8 (LE8) and applanation tonometry data (Exam 7), we calculated CVH scores per American Heart Association's LE8 guidelines. Multivariable-adjusted regression analyses examined the relations of LE8 with aortic stiffness and pressure pulsatility [negative inverse carotid-femoral pulse wave velocity (niCFPWV), central pulse pressure (CPP), respectively], and examined effect modification by age and sex.
ACS Omega
September 2025
Medical School of Chinese PLA, The Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
Vascular aging is a major risk factor for cardiovascular diseases (CVDs) in the older individuals. Epigallocatechin-3-gallate (EGCG), the primary active compound in green tea, exhibits cardiovascular protective effects. However, its effect and the underlying mechanism of the same on vascular aging remain unclear.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2025
Department of Cardiovascular Medicine, Fengxian Central Hospital, Shanghai, China.
Background: Arterial compliance is an independent predictor of diastolic dysfunction. Invasive catheterization can accurately reflect diastolic function. However, studies on the invasive assessment of diastolic function are currently limited.
View Article and Find Full Text PDF