A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Exploring a Novel Metallophosphoesterase for Polycarbonate Degradation via Transcriptome Analysis. | LitMetric

Exploring a Novel Metallophosphoesterase for Polycarbonate Degradation via Transcriptome Analysis.

J Hazard Mater

School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea; School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea; Synthetic Biology Research Cen

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polycarbonate (PC), a widely used thermoplastic, poses significant environmental challenges due to its persistence and the release of bisphenol A (BPA), a known xenoestrogen. Here, we report the isolation of Bacillus subtilis JNU01 (BsJNU01), capable of utilizing PC as its sole carbon source. Through transcriptomic analysis, we identified metallophosphoesterase from BsJNU01 (BsMPPE), the first reported metallophosphoesterase capable of degrading polycarbonate by catalyzing the hydrolysis of carbonate ester bonds. This enzyme operates under mild aqueous conditions (30 °C, pH 7), releasing 30 μmol of BPA as a monomer and demonstrating effective PC degradation under environmentally friendly conditions. PC biodegradation was confirmed by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), and gas chromatography-mass spectrometry (GC-MS). Furthermore, surface and mechanical analyses revealed significant degradation and structural changes in PC films following BsMPPE treatment, with toughness showing a 40-70 % decrease compared to untreated PC films. This study represents a breakthrough in microbial plastic degradation, establishing a sustainable biocatalytic platform for PC recycling and upcycling technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.138330DOI Listing

Publication Analysis

Top Keywords

exploring novel
4
novel metallophosphoesterase
4
metallophosphoesterase polycarbonate
4
degradation
4
polycarbonate degradation
4
degradation transcriptome
4
transcriptome analysis
4
analysis polycarbonate
4
polycarbonate thermoplastic
4
thermoplastic poses
4

Similar Publications