Boosting Reaction Kinetics with Viscous Nanowire Dispersions.

J Am Chem Soc

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Higher viscosity typically slows chemical reactions by restricting molecular movement, while stirring accelerates reactions by enhancing reactant diffusion and collisions. However, in this study, we reveal that reaction rates in nanowire dispersions─with microscopic viscosity ∼300 times that of decane, can be enhanced by over an order of magnitude. Counterintuitively, stirring slows the reaction with higher stirring rates causing even greater deceleration. This phenomenon is observed in both photo- and thermally activated cyclic reactions. Molecular dynamics simulations and confocal laser scanning microscopy suggest that aliphatic chains grafted onto nanowires interact with anisotropic molecules, increasing their local concentrations near the nanowires. Notably, azobenzene photoisomerization is completely inhibited in the nanowire dispersion, despite completing within 30 s in the absence of nanowires. We propose that the aliphatic chains align reactive molecules directionally, while the confined space prevents bulky -isomer formation. These findings show that nanowires not only harvest and orient reactive molecules but also exclude bulky products, significantly enhancing the reaction kinetics in confined systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c02034DOI Listing

Publication Analysis

Top Keywords

reaction kinetics
8
aliphatic chains
8
reactive molecules
8
boosting reaction
4
kinetics viscous
4
viscous nanowire
4
nanowire dispersions
4
dispersions higher
4
higher viscosity
4
viscosity typically
4

Similar Publications

This study systematically investigates the role of nitrogen annealing in enhancing the structural and electrochemical properties of ZnNiO/NF composite anode materials synthesized via hydrothermal methods. By comparing air-annealed and nitrogen-annealed (400 and 600 °C) samples, it is demonstrated that nitrogen annealing at 400 °C induces the densely stacked nanosheet morphology with optimized lattice regularity, which can significantly improve the charge transport kinetics and the interfacial stability. Electrochemical evaluations reveal an outstanding initial discharge capacity of 1873.

View Article and Find Full Text PDF

The anaerobic glycyl radical enzyme choline trimethylamine-lyase (CutC) is produced by multiple bacterial species in the human gut microbiome and catalyzes the conversion of choline to trimethylamine (TMA) and acetaldehyde. CutC has emerged as a promising therapeutic target due to its role in producing TMA, which is subsequently oxidized in the liver to form trimethylamine--oxide (TMAO). Elevated TMAO levels are associated with several human diseases, including atherosclerosis and other cardiovascular disorders─a leading cause of mortality worldwide.

View Article and Find Full Text PDF

Ultrathin Amorphous Iron Oxide Nanosheets for Improving the Electrochemical Performance of Li-S Batteries.

Langmuir

September 2025

Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Normal University, Wuhu 241000, China.

The sluggish kinetics and diffusion of lithium polysulfide (LiPS) intermediates lead to the decline in the capacity and rate of high-energy lithium-sulfur (Li-S) batteries. Integrating adsorbents and electrocatalysts into the Li-S system is an effective strategy for suppressing the polysulfide shuttle and enhancing the redox kinetics of sulfur species. The disordered structure of the electrocatalysts exhibits significantly enhanced catalytic activity.

View Article and Find Full Text PDF

l-glufosinate has garnered increasing attention as an ideal herbicide for weed control in agriculture. However, the underlying racemization process of l-glufosinate in the aqueous phase remains unclear. In this work, we elucidated the racemization mechanisms through heating reactions and theoretical calculations.

View Article and Find Full Text PDF

Thermodynamic and Kinetic Effects in Spin Blocking of CO Coordination Reactions.

Inorg Chem

September 2025

Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States.

The iron(I) dinitrogen complex PhB(AdIm)FeN, which is supported by a very bulky 1-adamantyl-substituted tris(carbene)borate ligand, reacts with equimolar CO at low temperature to afford the high spin ( = 3/2) complex PhB(AdIm)Fe(CO). This monocarbonyl complex reacts with additional CO to afford the low spin ( = 1/2) dicarbonyl complex PhB(AdIm)Fe(CO). By contrast, the high spin iron(I) tris(pyrazolyl)borate complex TpFe(CO) does not react with additional CO.

View Article and Find Full Text PDF