Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of hierarchical core-shell structures and multicomponent metal boride/metal oxide-based composites presents a promising strategy to enhance supercapacitor (SC) performance. In this study, we synthesized a NiB@Ni(BO) (0D@2D) core-shell structure and integrated it with VMoO (VMO) rods (1D) to form a NiB@Ni(BO)/VMO (NB@NBO/VMO (0D@2D/1D)) composite. This composite was then used as an electrode material on a flexible carbon cloth (CC) substrate for SC applications. The 1D-VMO rods were derived from V-doped MoSe nanosheets via hydrothermal synthesis and calcination, while the NB@NBO/VMO composite was obtained by using a liquid-phase method. Structural, compositional, and morphological characterizations were conducted using XRD, XPS, FE-SEM, and TEM-EDS. In a three-electrode system, the NB@NBO/VMO-50 composite showed an impressive of 698 F g at 1 A g, ascribed to its unique core-shell architecture, which enhances contact and faradaic properties, shortens ion diffusion paths, and provides abundant active sites. Notably, the NB@NBO/VMO-50 displayed excellent cyclic stability, retaining 75.1% of its capacitance after 10,000 cycles at 10 A g. This performance is better than those of other electrodes, including pristine VMO/CC, NB/CC, NB@NBO/VMO-25, and NB@NBO/VMO-75. When evaluated in a two-electrode asymmetric SC system, the NB@NBO/VMO-50/CC||rGO device operated at 1.6 V and delivered a high energy density (ED) of 40.5 Wh kg at a power density (PD) of 800 W kg. It also reached a PD of 16,000 W kg while maintaining an ED of 23.5 Wh kg. The device also showed remarkable long-term durability, maintaining 79.3% of its capacitance and 99.9% Coulombic efficiency after 8000 charge-discharge cycles at 8 A g, demonstrating its strong potential for next-generation energy storage applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044688PMC
http://dx.doi.org/10.1021/acs.langmuir.5c00378DOI Listing

Publication Analysis

Top Keywords

high energy
8
energy density
8
structural engineering
4
core-shell
4
engineering core-shell
4
core-shell nib@nibo
4
nib@nibo vmoo
4
vmoo 0d@2d/1d
4
0d@2d/1d composites
4
composites advanced
4

Similar Publications

Why transport matters: an update on carrier proteins in Apicomplexan parasites.

Curr Opin Microbiol

September 2025

Cryptosporidiosis Laboratory, The Francis Crick Institute, London, United Kingdom. Electronic address:

The movement of molecules across the membranous barriers of a cell is fundamental to cellular homeostasis in every living organism. This vital process is facilitated through a mechanistically diverse class of proteins, collectively known as membrane transporters. Among these are so-called carrier proteins that can function in passive and active transport mechanisms.

View Article and Find Full Text PDF

Ni-Fe (oxy)hydroxides are among the most active oxygen evolution reaction (OER) catalysts in alkaline media. However, achieving precise control over local asymmetric Fe-O-Ni active sites in Ni-Fe oxyhydroxides for key oxygenated intermediates' adsorption steric configuration regulation of the OER is still challenging. Herein, we report a two-step dealloying strategy to fabricate asymmetric Fe-O-Ni pair sites in the shell of NiOOH@FeOOH/NiOOH heterostructures from NiFe Prussian blue analogue (PBA) nanocubes, involving anion exchange and structure reconstruction.

View Article and Find Full Text PDF

Photofunctionalization of Light Alkanes by FeO/BCN at 12 °C.

J Am Chem Soc

September 2025

State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.

The activation of methane and other gaseous hydrocarbons at low temperature remains a substantial challenge for the chemistry community. Here, we report an anaerobic photosystem based on crystalline borocarbonitride (BCN) supported Fe-O nanoclusters, which can selectively functionalize C-H bonds of methane, ethane, and higher alkanes to value-added organic chemicals at 12 °C. Scanning transmission electron microscopy and X-ray absorption spectroscopy corroborated the ultrafine FeOOH and FeO species in Fe-O clusters, which enhanced the interfacial charge transfer/separation of BCN as well as the chemisorption of methane.

View Article and Find Full Text PDF

Theoretical Study of Ru-Catalyzed Decarboxylative Heteroarylation of Aryl Carboxylic Acids.

J Org Chem

September 2025

State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.

The -di(2-pyridyl)arenes, featuring a unique structure, hold significant promise for applications in fluorescent probes, synthetic nanoparticle stabilizers, and chemical synthesis. The mechanism of Ru-catalyzed decarboxylation and heteroarylation reactions of aryl carboxylic acids to access -dipyridylarenes was elucidated using DFT calculations, which involved C-H bond activation, oxidative addition, reductive elimination, and decarboxylation processes to form -di(2-pyridyl)arenes. The rate-determining step of the reaction is the second reductive elimination step with an energy barrier of 27.

View Article and Find Full Text PDF

Two-dimensional (2D) materials offer a valuable platform for manipulating and studying chemical reactions at the atomic level, owing to the ease of controlling their microscopic structure at the nanometer scale. While extensive research has been conducted on the structure-dependent chemical activity of 2D materials, the influence of structural transformation during the reaction has remained largely unexplored. In this work, we report the layer-dependent chemical reactivity of MoS during a nitridation atomic substitution reaction and attribute it to the rearrangement of Mo atoms.

View Article and Find Full Text PDF