Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The phenomenon of population aging presents a significant global challenge, with the aging population in China steadily increasing. As individuals progress in age, there is a gradual deterioration of human organs and systems, as well as a decline in the immune system, referred to as immunosenescence. Atractylodis macrocephalae rhizoma (BZ) has been historically used in China for its medicinal properties, including gastrointestinal improvement, immunomodulation, anti-aging, antioxidant effects, and anti-tumor effects. Nevertheless, there remains a gap in understanding the pharmacological and molecular mechanisms underlying its anti-immunosenescence effects.

Methods: This study employed UPLC-ESI-MS and network pharmacology to create a network map of BZ ultrafine powder (BZU) and its aging targets. Enrichment analysis was then used to identify the primary mechanistic pathways underlying BZU's anti-immunosenescence effects. The primary components of BZU were quantitatively analyzed using high-performance liquid chromatography (HPLC). Naturally aging rats were used to examine the effects of different oral doses (0.25, 0.5, and 1 g/kg) of BZU over 5 weeks on aging performance, peripheral blood immunophenotyping and cell count, and splenic lymphocyte proliferation rate. To validate the findings of network pharmacology, quantitative RT-PCR, Western blotting, and immunofluorescence analyses were conducted.

Results: Our analyses demonstrated that BZU improved various indicators of aging in naturally aging rats, such as increasing the number of voluntary activities, enhance grip strength and fatigue resistance, increasing the microcirculatory blood flow and improving hematological levels. The BZU administration enhanced T and B lymphocyte proliferation and significantly improved the lymphocyte-to-T cell subpopulation ratio. It can elevate serum IL-2 and IL-4 levels while reducing IL-6, IFN-γ and TNF-α levels in naturally aging rats. Finally, it increased CD3 protein expression in the spleen while decreasing protein levels of PI3K, p-AKT, IKKα/β, and NF-κB. It also decreased the mRNA expression of , , and κ.

Conclusion: These findings suggest that BZU may enhance lymphocyte proliferation by inhibiting the PI3K/Akt/NF-κB signaling pathway, correcting immune cell imbalances, reducing inflammatory responses, and ultimately enhancing immune function and potentially delaying aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006087PMC
http://dx.doi.org/10.3389/fphar.2025.1550357DOI Listing

Publication Analysis

Top Keywords

naturally aging
16
aging rats
16
lymphocyte proliferation
12
aging
10
ultrafine powder
8
atractylodis macrocephalae
8
macrocephalae rhizoma
8
immune function
8
pi3k/akt/nf-κb signaling
8
signaling pathway
8

Similar Publications

Primary progressive aphasia (PPA) is a neurological syndrome characterized by the gradual deterioration of language capabilities. Due to its neurodegenerative nature, PPA is marked by a continuous decline, necessitating ongoing and adaptive therapeutic interventions. Recent studies have demonstrated that behavioral therapies, particularly when combined with neuromodulation techniques such as transcranial direct current stimulation (tDCS), can improve treatment outcomes, including the long-term maintenance and generalization of therapeutic effects.

View Article and Find Full Text PDF

Do turtles get cancer?

Bioscience

September 2025

School of Life Sciences, University of Nottingham, Nottingham, England, United Kingdom.

Turtles are renowned for their extreme longevity and tremendous range in body size. Theoretically, large, long-lived organisms should face higher cancer risks because of increased cell numbers and lifetime cellular turnover, yet cancer appears to be exceptionally rare in turtles. In the present article, we synthesize the current knowledge on cancer prevalence in turtles, drawing from zoo necropsies, pathology reports, and comparative oncology studies, and present new data spanning additional species that reinforce this pattern.

View Article and Find Full Text PDF

Phytochemicals in Bone Therapy: Exploring Natural Alternatives for Bone Health.

Int J Nanomedicine

September 2025

Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.

Bone diseases such as osteoporosis and osteoarthritis are increasingly prevalent, particularly in aging populations. While conventional treatments, including synthetic drugs and mineral supplements, are effective yet often associated with side effects and long-term economic burdens. Active compounds derived from nature, "Phytochemicals" have garnered attention due to their potential to provide safer and more sustainable alternative therapeutic options.

View Article and Find Full Text PDF

Over the past two decades, network medicine (NM) has evolved to help define disease mechanisms, identify drug targets, and guide increasingly precise therapies. In recent years, the integration of NM with artificial intelligence (AI), particularly deep learning techniques, has evolved with increasing applications. AI techniques help elucidate complex disease mechanisms and define precise therapies.

View Article and Find Full Text PDF

Introduction: The development of new drugs for Alzheimer's disease (AD) remains a major challenge due to the disorder's complex and multifactorial nature. 2'-Fucosyllactose (2'-FL), a human milk oligosaccharide, has demonstrated promising neuroprotective properties. However, its effects on AD-related cognitive decline are not yet fully understood.

View Article and Find Full Text PDF