98%
921
2 minutes
20
Human Papillomavirus Virus-Like Particles (HPV-VLPs) are a highly effective vaccine to prevent cervical cancer. Current production and purification processes for HPV-VLPs suffer from poor yield and suboptimal process economics. The current study presents a purification strategy based multi-modal cation exchange chromatography (Capto™ MMC) for the purification of HPV-VLPs produced in Pichia pastoris. Single step purification of disassembled VLPs offered a superior product recovery (> 80 %) and purity (> 70 %) compared to traditional VLP purification platforms that comprise anion exchange and cation exchange chromatography (yield: 32 %, purity: 52 %). Furthermore, it was observed that disassembling the intact VLPs to capsomere subunits before purification provided an improved dynamic binding capacity of up to 18.1 mg/mL (at 2 min residence time), 4 times higher than that with intact HPV-VLPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jviromet.2025.115168 | DOI Listing |
Anal Chim Acta
June 2025
Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, 07065, USA. Electronic address:
Background: Nano-emulsions with immunogenic properties can be incorporated into vaccines to act as an adjuvant where they can enhance the immune response of a given vaccine. Analytically, studying vaccine antigens, such as Virus-Like Particles (VLPs), in the presence of adjuvants, like nano-emulsions, is very challenging as they are both heterogenous nano species of similar sizes but very different physiochemical properties. Therefore, typical analysis of nanoparticles using separation approaches such as Size Exclusion Chromatography (SEC) and Field-Flow Fractionation (FFF) is difficult due to the size similarities among these nano-species which complicates their separation.
View Article and Find Full Text PDFJ Virol Methods
July 2025
School of Interdisciplinary Research, Indian Institute of Technology Delhi, India; Department of Chemical Engineering, Indian Institute of Technology Delhi, India. Electronic address:
Human Papillomavirus Virus-Like Particles (HPV-VLPs) are a highly effective vaccine to prevent cervical cancer. Current production and purification processes for HPV-VLPs suffer from poor yield and suboptimal process economics. The current study presents a purification strategy based multi-modal cation exchange chromatography (Capto™ MMC) for the purification of HPV-VLPs produced in Pichia pastoris.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
November 2023
Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia.
Background: Cervical cancer caused by the human papillomavirus (HPV) is one of the most frequent malignances globally. HPV 52 is a high-risk cancer-causing genotype that has been identified as the most prevalent type in Indonesia. Virus-like particles (VLP)-based vaccinations against HPV infection could benefit from self-assembled VLP of L1 capsid protein.
View Article and Find Full Text PDFJ Gen Virol
May 2021
Laboratoire de santé publique du Québec, Institut national de santé publique Québec, 20045 Sainte-Marie Road, Sainte-Anne-de-Bellevue, Quebec, Canada.
Serum antibody levels can be used to measure the humoral immune response against human papillomaviruses (HPV). We developed and validated a rapid, technically simple and relatively inexpensive multiplex non-competitive Luminex-based immunoassay (ncLIA) to measure total IgG antibody levels against four HPV types. For the assay's solid phase, virus-like particles (VLPs) of HPV6, 11, 16 and 18 were bound to heparin-coated beads.
View Article and Find Full Text PDFAIDS Rev
May 2020
Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron.
Virus-like particles (VLPs) are a type of subunit vaccine which resembles viruses but do not contain any genetic material so that they are not infectious. VLPs maintain the same antigenic conformation to the original virus, and they could be a better vaccine candidate than live-attenuated and inactivated vaccines. In addition, compared to other subunit vaccines such as soluble protein, VLPs can stimulate both innate and adaptive immune responses effectively and safely against several pathogens by the closer morphology to its native virus.
View Article and Find Full Text PDF