Separation of virus-like particles and nano-emulsions for vaccine development by Capillary Zone Electrophoresis.

Anal Chim Acta

Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, 07065, USA. Electronic address:

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Nano-emulsions with immunogenic properties can be incorporated into vaccines to act as an adjuvant where they can enhance the immune response of a given vaccine. Analytically, studying vaccine antigens, such as Virus-Like Particles (VLPs), in the presence of adjuvants, like nano-emulsions, is very challenging as they are both heterogenous nano species of similar sizes but very different physiochemical properties. Therefore, typical analysis of nanoparticles using separation approaches such as Size Exclusion Chromatography (SEC) and Field-Flow Fractionation (FFF) is difficult due to the size similarities among these nano-species which complicates their separation.

Results: In this study, a Capillary Zone Electrophoresis (CZE) method was developed, which utilizes a separation mechanism based on the charge-to-size ratio of the analytes. The method was used to quantify VLPs of the Human Papilloma Virus (HPV) and Squalene Nano-Emulsion (SNE) adjuvant mixtures while also measuring buffer excipients, chloride and histidine. The method was assessed according to International Conference on Harmonization (ICH Q2) guidelines with respect to linearity, ranges, accuracy (87-109 %), precision (≤20 %), quantitation and detection limits.

Significance: This study was conducted to prove the feasibility of utilizing CZE to characterize VLPs and SNE mixtures with dilution as the only sample preparation. The CZE conditions are simpler than other CZE conditions suggested for VLPs and easily transferred between users. Similar CZE methods could also be developed for other vaccine and adjuvant mixtures as well as other emulsion and nanoparticle-based systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2025.344011DOI Listing

Publication Analysis

Top Keywords

virus-like particles
8
capillary zone
8
zone electrophoresis
8
adjuvant mixtures
8
cze conditions
8
cze
5
separation virus-like
4
particles nano-emulsions
4
vaccine
4
nano-emulsions vaccine
4

Similar Publications

Background: Enteroviruses, including Coxsackie B (CVB) viruses, can cause severe diseases such as myocarditis, pancreatitis, and meningitis. Vaccines can prevent these complications, but conserved non-neutralizing epitopes in the viral capsid may limit their effectiveness. The immunodominant PALXAXETG motif, located in the VP1 N-terminus, is a highly conserved region in enteroviruses that elicits non-neutralizing antibody responses.

View Article and Find Full Text PDF

Raman-based PAT for multi-attribute monitoring during VLP recovery by dual-stage CFF: attribute-specific spectral preprocessing for model transfer.

Front Bioeng Biotechnol

August 2025

Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

Spectroscopic soft sensors are developed by combining spectral data with chemometric modeling, and offer as Process Analytical Technology (PAT) tools powerful insights into biopharmaceutical processing. In this study, soft sensors based on Raman spectroscopy and linear or partial least squares (PLS) regression were developed and successfully transferred to a filtration-based recovery step of precipitated virus-like particles (VLPs). For near real-time monitoring of product accumulation and precipitant depletion, the dual-stage cross-flow filtration (CFF) set-up was equipped with an on-line loop in the second membrane stage.

View Article and Find Full Text PDF

H5N1 influenza virus-like particles based on BEVS induce robust functional antibodies and immune responses.

Virology

August 2025

Changchun Institute of Biological Products Co.,Ltd, Changchun, China; State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, China. Electronic address:

Avian influenza virus infections pose a potential pandemic threat. The currently licensed vaccines have inherent limitations, emphasizing the urgent need for improved influenza vaccines. Here, we developed a novel hemagglutinin (HA) virus-like particle (VLP) vaccine candidate through the baculovirus expression vector system (BEVS).

View Article and Find Full Text PDF

Interferon-γ receptor signaling is critical for balanced immune activation and protection against influenza after vaccination.

Virology

September 2025

Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA. Electronic address:

To better understand the contribution of interferon-γ (IFN-γ) receptor signaling to vaccine-induced immunity, we employed A129 (IFN-α/β receptor-deficient) and AG129 (IFN-α/β/γ receptor-deficient) mouse models. AG129 mice induced comparable levels of virus-specific IgG after vaccination with influenza virus H5 hemagglutinin (HA) virus-like particles (VLPs). Vaccinated AG129 mice with HA VLPs exhibited impaired Th1-immune responses, lower hemagglutination inhibition (HAI) titers, increased susceptibility to virus infection, and lower survival rates following influenza virus (H5N1) challenge than vaccinated A129 mice.

View Article and Find Full Text PDF

T cell receptor (TCR) specificity is central to the efficacy of T cell therapies, yet scalable methods to map how TCR sequences shape antigen recognition remain limited. To address this, we introduce VelociRAPTR, a library-on-library approach that combines yeast-displayed TCR libraries with pMHC-displaying virus-like particles (pMHC-VLPs) to rapidly screen millions of TCR-antigen interactions. We show that pMHC-VLPs efficiently bind TCRs on yeast and generate equivalent data to recombinantly produced pMHC protein.

View Article and Find Full Text PDF