Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The mechanism of ferroptosis propagation is still unclear. Here our results indicate that the cells undergoing ferroptosis secrete Galectin-13, which binds to CD44 and inhibits the plasma membrane localization of SLC7A11 in neighboring cells, thereby accelerating neighboring cell death and promoting ferroptosis propagation. FOXK1 was phosphorylated by PKCβII and then facilitated the expression and secretion of Galectin-13 during ferroptotic cell death. Correlation analysis and functional analysis revealed that ferroptosis propagation ability was a previously unrecognized determinant of ferroptosis sensitivity in human cancer cells. A synthetic Galectin-13 mimetic peptide was shown to strongly enhance the sensitivity of tumors to the imidazole ketone erastin, radiotherapy and immunotherapy by boosting ferroptosis. In particular, cancer stem cells were vulnerable to the combination of Galectin-13 mimetic peptide and ferroptosis inducers. Our study provides new insights into ferroptosis propagation and highlights novel strategies for targeting ferroptosis to treat tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41589-025-01888-2 | DOI Listing |