98%
921
2 minutes
20
Cultivated lettuce ( L.) is considered one of the most important economic vegetables worldwide; however, it is subjected to different stresses (salt stress, etc.) during its growth and development, resulting in yield reductions. In this study, we selected cultivated red lettuce and wild lettuce species ( L.) to investigate the phenotypic and physiological changes in these lettuce under different salt treatment conditions. Functional annotation and enrichment analysis of the differentially expressed genes (DEGs) in the lettuce leaves and roots between the control and salt treatments were performed, identifying the key genes responding to salt stress. The results showed that the growth of the two types of lettuce was limited by salt stress, with decreased leaf area, main root length, biomass, and photosynthesis parameters noted. The cultivated red lettuce and the wild lettuce exhibited similar trends in terms of the variation in their antioxidant enzymatic activity and the content of osmoregulatory compounds in their leaves. The results of our transcriptomic analysis revealed that the mitogen-activated protein kinase (MAPK) signaling pathway, transporters, cytochrome P450, phenylpropanoid biosynthesis, and isoflavonoid biosynthesis were involved in the response to salt stress in the lettuce seedlings. The red lettuce cultivar showed a greater abundance of DEGs related to secondary metabolite biosynthesis and aquaporins under the salt treatment, resulting in a salinity-tolerant capacity comparable to that of the wild lettuce species. These results reveal important biosynthesis pathways that may play a key role in the salt tolerance of lettuce seedlings and provide key candidate genes that could be functionally characterized further and utilized to genetically improve new salt-tolerant varieties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11989937 | PMC |
http://dx.doi.org/10.3390/ijms26073425 | DOI Listing |
Microbiol Resour Announc
September 2025
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France.
We report the complete genome sequence of strain MNA2.1, isolated from coastal sediments of the Berre lagoon, France. The genome consists of a 3,866,286 bp circular chromosome and a megaplasmid of 715,144 bp.
View Article and Find Full Text PDFFood Sci Nutr
September 2025
Department of Biology, College of Natural and Computational Sciences Mizan-Tepi University Tepi Ethiopia.
Climatic challenges increasingly threaten global food security, necessitating crops with enhanced multi-stress resilience. Through systematic transcriptomic analysis of 100 wheat genotypes under heat, drought, cold, and salt stress, we identified 3237 differentially expressed genes (DEGs) enriched in key stress-response pathways. Core transcription factors (, , ) and two functional modules governing abiotic tolerance were characterized.
View Article and Find Full Text PDFISME Commun
January 2025
Department of Environmental Engineering, National Cheng Kung University, Tainan City 70101, Taiwan.
Global salinization increasingly threatens ecosystem integrity and the regulation of biogeochemical cycles. Our study reveals novel insights into the microbial contributions to the organohalide decomposition in saline environments, demonstrating the unprecedented ability of organohalide-respiring bacteria and to completely dechlorinate trichloroethene to non-toxic ethene under hypersaline conditions (up to 31.3 g/L) in long-term operations.
View Article and Find Full Text PDFTemperature (Austin)
June 2025
Kanto Golf Association, Chuo-ku, Tokyo, Japan.
The associated factors for exertional heat stroke among amateur golfers remain poorly understood. We conducted a case-control study to examine exertional heat exhaustion (EHE) - related symptoms among amateur golfers in Japan using a self-administered questionnaire. Retrospective case-control study design.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2025
School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China; Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, PR China.
High-performance hydrogel biomaterials hold considerable promise for advanced wound care. However, the suboptimal mechanical properties of conventional hydrogel materials limit their practical application. In this study, Hyaluronic acid sodium salt (HA), xanthan gum (XG), and N-acryloyl-glycinamide (NAGA) hydrogels with porous structures were successfully fabricated using in-situ extrusion 3D printing technology, and a functionalization strategy involving tea polyphenol (TP) immersion was proposed to enhance material properties through additional hydrogen bonding.
View Article and Find Full Text PDF