98%
921
2 minutes
20
TAM (TYRO3, AXL, MERTK) receptor tyrosine kinases (RTKs) have intrinsic roles in tumor cell proliferation, migration, chemoresistance, and suppression of antitumor immunity. The overexpression of TAM RTKs is associated with poor prognosis in various types of cancer. Single-target agents of TAM RTKs have limited efficacy because of an adaptive feedback mechanism resulting from the cooperation of TAM family members. This suggests that multiple targeting of members has the potential for a more potent anticancer effect. The present study used a deep-learning based drug-target interaction (DTI) prediction model called molecule transformer-DTI (MT-DTI) to identify commercially available drugs that may inhibit the three members of TAM RTKs. The results showed that fostamatinib, a spleen tyrosine kinase (Syk) inhibitor, could inhibit the three receptor kinases of the TAM family with an IC <1 µM. Notably, no other Syk inhibitors were predicted by the MT-DTI model. To verify this result, this study performed studies with various types of cancer cell lines. Consistent with the DTI results, this study observed that fostamatinib suppressed cell proliferation by inhibiting TAM RTKs, while other Syk inhibitors showed no inhibitory activity. These results suggest that fostamatinib could exhibit anticancer activity as a pan-TAM inhibitor. Taken together, these findings demonstrated that this artificial intelligence model could be effectively used for drug repurposing and repositioning. Furthermore, by identifying its novel mechanism of action, this study confirmed the potential for fostamatinib to expand its indications as a TAM inhibitor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001310 | PMC |
http://dx.doi.org/10.3892/etm.2025.12860 | DOI Listing |
Int J Mol Sci
July 2025
Laboratory of Molecular Immunology and Immunobiotechnology, M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan.
Inflammation is a self-defense mechanism that controls the homeostasis of an organism, and its alteration by persistent noxious stimuli could lead to an imbalance in the regulation of inflammatory responses mediated by innate and adaptive immunity. During chronic inflammation, sustained exposure of myeloid cells to the various inflammatory signals derived from inflamed tissue could lead to the generation of myeloid cells with an immunosuppressive state, called myeloid-derived suppressor cells (MDSCs), which can exert protective or deleterious functions depending on the nature of signals and the specific inflammatory conditions created by different pathophysiological contexts. Initially identified in various tumor models and cancer patient samples, these cells have long been recognized as negative regulators of anti-tumor immunity.
View Article and Find Full Text PDFExp Ther Med
June 2025
Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
TAM (TYRO3, AXL, MERTK) receptor tyrosine kinases (RTKs) have intrinsic roles in tumor cell proliferation, migration, chemoresistance, and suppression of antitumor immunity. The overexpression of TAM RTKs is associated with poor prognosis in various types of cancer. Single-target agents of TAM RTKs have limited efficacy because of an adaptive feedback mechanism resulting from the cooperation of TAM family members.
View Article and Find Full Text PDFCell Death Dis
March 2025
Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan.
Proteolytic processing of Receptor Tyrosine Kinases (RTKs) leads to the release of ectodomains in the extracellular space. These soluble ectodomains often retain the ligand binding activity and dampen canonical pathways by acting as decoy receptors. On the other hand, shedding the ectodomains may initiate new molecular events and diversification of signalling.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
May 2025
Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
Introduction: Metastasis is the major cause of thyroid cancer morbidity and mortality. However, the mechanisms are still poorly understood.
Methods: We performed genome-wide transcriptome analysis comparing gene expression profile of metastatic thyroid cancer cells (Met) with primary tumor cells established from transgenic mouse models of papillary thyroid cancer (PTC), follicular thyroid cancer (FTC), poorly differentiated thyroid cancer (PDTC), and anaplastic thyroid cancer (ATC).
Signal Transduct Target Ther
February 2025
Harvard Medical School, Boston, MA, USA.
AXL, a member of the TAM receptor family, has emerged as a potential target for advanced-stage human malignancies. It is frequently overexpressed in different cancers and plays a significant role in various tumor-promoting pathways, including cancer cell proliferation, invasion, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, stemness, DNA damage response, acquired therapeutic resistance, immunosuppression, and inflammatory responses. Beyond oncology, AXL also facilitates viral infections, including SARS-CoV-2 and Zika highlighting its importance in both cancer and virology.
View Article and Find Full Text PDF