98%
921
2 minutes
20
Purpose: Triple-negative breast cancer (TNBC) is a particularly aggressive subtype of breast cancer, with approximately 30% of patients eventually developing brain metastases (BM), which result in poor outcomes. An understanding of the tumor microenvironment (TME) at both primary and metastatic sites offers insights into the mechanisms underlying BM and potential therapeutic targets.
Materials And Method: Spatial RNA sequencing (spRNA-seq) was performed on primary TNBC and paired BM tissues from three patients, one of whom had previously received immune checkpoint inhibitors before BM diagnosis. Specimen regions were categorized into tumor, proximal, and distal TME based on their spatial locations. Gene expression differences across these zones were analyzed, and immune cell infiltration was estimated using TIMER. A gene module analysis was conducted to identify key gene clusters associated with BM.
Results: Distinct gene expression profiles were noted in the proximal and distal TMEs. In BM, the proximal TME exhibited neuronal gene expression, suggesting neuron-tumor interactions compared to tumor, and upregulation of epithelial genes compared to the distal TME. Immune cell analysis revealed dynamic changes in CD8+ T cells and macrophages across the tumor and TME zones. Gene module analysis identified five key modules, including one related to glycolysis, which correlated with patient survival. Drug repurposing analysis identified potential therapeutic targets, including VEGFA, RAC1, EGLN3, and CAMK1D.
Conclusion: This study provides novel insights into the transcriptional landscapes in TNBC BM using spRNA-seq, emphasizing the role of neuron-tumor interactions and immune dynamics. These findings suggest new therapeutic strategies and underscore the importance of further research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4143/crt.2025.033 | DOI Listing |
Drug Dev Res
September 2025
R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India.
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality, with "epidermal growth factor receptor (EGFR)" mutations playing a pivotal role in tumor progression and carcinogenesis. "Third-generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs)," such as Osimertinib, have significantly improved treatment outcomes by overcoming resistance mechanisms like the T790M mutation. However, Osimertinib's clinical application is limited by cardiotoxicity concerns, necessitating safer alternatives.
View Article and Find Full Text PDFClin Transl Radiat Oncol
November 2025
Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
Background: Hypofractionated stereotactic radiotherapy (fSRT) is increasingly used for brain metastases (BMs) from non-small cell lung cancer (NSCLC). However, relevant data concerning treatment outcomes of fSRT and clinical utility of re-irradiation using fSRT (re-fSRT) remain scarce.
Methods: Consecutive NSCLC patients with fSRT-treated BMs from May 2018 to May 2022 were included.
Cureus
August 2025
Department of Radiology, Aichi Medical University, Nagakute, JPN.
Background This study was conducted to examine the effects of moving the isocenter (IC) position from the lesion to the center of the brain on stereotactic radiosurgery (SRS) planning with volumetric-modulated arcs (VMA) using the High-Definition Dynamic Radiosurgery (HDRS) platform, a combination of the Agility multileaf collimator (MLC) (Elekta AB, Stockholm, Sweden) and the Monaco planning system (Elekta AB), for single brain metastases (BMs). Methodology The study subject included 36 clinical BMs with the gross tumor volume (GTV) ranging from 0.04 to 48.
View Article and Find Full Text PDFCureus
August 2025
Department of Radiology, Aichi Medical University, Nagakute, JPN.
Purpose This planning study aimed to clarify the significance of inverse planning with variable dose rate (VDR) and the segment shape optimization (SSO) in the quality and efficiency of dynamic conformal arcs (DCA) using the high-definition dynamic radiosurgery (HDRS) platform for stereotactic radiosurgery (SRS) of single brain metastases (BMs). Materials and methods Twenty clinical BMs were included, with the gross tumor volume (GTV) ranging from 0.33 cc to 48.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Radiation Oncology, Jiangxi Cancer Hospital and Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.
We present a case of a 68-year-old male with advanced non-small cell lung cancer (NSCLC), PD-L1 negative and driver gene negative, who exhibited a significant abscopal effect following radiotherapy combined with systemic immunotherapy (sintilizumab) and chemotherapy. The patient achieved complete remission (CR) of intracranial metastases without cranial irradiation, suggesting a systemic immune response triggered by the combination of radiotherapy and immunotherapy. This case highlights the potential of radiotherapy combined with immuno-chemotherapy to induce abscopal effects, even in PD-L1 negative patients, and underscores the importance of further investigation into this therapeutic strategy.
View Article and Find Full Text PDF