Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Folate deficiency is a widespread nutritional issue, and biofortifying dairy products through lactic acid bacteria (LAB) is a promising strategy to enhance natural folate levels. This study aimed to develop a reliable method for selecting and subsp. strains with enhanced folate production for use as functional starter cultures. Initially, a traditional microbiological assay (MA) was used to measure folate production in 36 LAB strains isolated from fermented milks. Due to MA's limitations, an untargeted and semi-quantitative method combining ultra-high-performance liquid chromatography (UHPLC) with high-resolution mass spectrometry (HRMS) was developed for a more comprehensive folate screening. The MA showed higher folate production in strains (309-639 µg/L) compared to subsp. (up to 48 µg/L). Subsequently, nine selected LAB strains were further analyzed using the UHPLC-HRMS approach, which enabled the identification and semi-quantification of six folate metabolites, namely dihydrofolate, tetrahydrofolate (THF), 10-formyl-THF, 5,10-methenyl-THF, 5,10-methylene-THF, and 5-methyl-THF. Lab-scale yogurt production using the top-performing strains, as identified through the HRMS method, demonstrated an increase in folate content over a 14-day shelf life. These findings revealed the potential of UHPLC-HRMS as a high-throughput alternative method for folates detection, offering a promising tool for screening folate-enhanced LAB strains for biofortification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11989110PMC
http://dx.doi.org/10.3390/foods14071112DOI Listing

Publication Analysis

Top Keywords

folate production
12
lab strains
12
lactic acid
8
acid bacteria
8
shelf life
8
folate
8
strains
6
untargeted screening
4
screening based
4
based uhplc-hrms
4

Similar Publications

Lipid nanocapsules (LNCs) are an emerging nanocarrier platform for cancer therapy as they can co-deliver multiple drugs, promote synergistic action, and provide targeted drug delivery. The phase inversion temperature (PIT) process is most used for LNC formulation, which has the advantage of process simplicity, thermodynamic stability, and the employment of non-toxic solvents without requiring high energy input. Surface functionalization with targeting ligands like folic acid and peptides increases tumor specificity and reduces off-target toxicity.

View Article and Find Full Text PDF

Electrochemical sensors capable of detecting different types of biomolecules using a single electrode are highly desirable for simplifying analytical platforms and expanding their practical applicability. Herein, we develop a multifunctional electrochemical sensor based on a 3D honeycomb-like porous rGO/PPy-POM composite film for the independent detection of dopamine (DA) and folic acid (FA), two chemically distinct and clinically relevant biomolecules. The electrode is fabricated through a facile, low-cost, and environmentally friendly breath figure method to create a 3D porous reduced graphene oxide (rGO) framework, followed by codeposition of polypyrrole (PPy) and polyoxometalates (POMs).

View Article and Find Full Text PDF

Metastatic and relapsed osteosarcoma (OS) remains difficult to treat despite advanced surgical techniques, intensified chemotherapy, and targeted therapies. Adoptive immunotherapies such as chimeric antigen receptor (CAR) T cells, are in their nascent stage, but remain a viable therapeutic strategy for patients with aggressive solid tumors such as OS. Folate receptor- (FOLR1) has been functionally implicated in OS pathophysiology, providing rationale as a potential therapeutic target.

View Article and Find Full Text PDF

Modulating macrophage function is an effective strategy for treating atherosclerosis. Our previous research shows that tilianin (Til) effectively regulates macrophage polarization. This immune modulation positions Til as a promising plant-derived therapeutic agent with potential for atherosclerosis treatment and management.

View Article and Find Full Text PDF

Limosilactobacillus fermentum CRL2085, isolated from feedlot cattle rations, displayed high efficiency as a probiotic when administered to animals. A comprehensive genomic analysis was performed to elucidate the genetic basis underlying its probiotic potential. Fifteen genomic islands and CRISPR-Cas elements were identified in its genome.

View Article and Find Full Text PDF