98%
921
2 minutes
20
Early childhood is crucial for brain functional development. Using advanced neuroimaging methods, characterizing functional connectivity has shed light on the developmental process in infants. However, insights into spatiotemporal functional maturation from birth to early childhood are substantially lacking. In this study, we aggregated 1,091 resting-state functional MRI scans of typically developing children from birth to 6 years of age, harmonized the cohort and imaging-state-related bias, and delineated developmental charts of functional connectivity within and between canonical brain networks. These charts revealed potential neurodevelopmental milestones and elucidated the complex development of brain functional integration, competition and transition processes. We further determined that individual deviations from normative growth charts are significantly associated with infant cognitive abilities. Specifically, connections involving the primary, default, control and attention networks were key predictors. Our findings elucidate early neurodevelopment and suggest that functional connectivity-derived brain charts may provide an effective tool to monitor normative functional development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185323 | PMC |
http://dx.doi.org/10.1038/s41562-025-02160-2 | DOI Listing |
JAMA Psychiatry
September 2025
School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia.
Importance: Cannabis is the most commonly used illicit drug, with 10% to 30% of regular users developing cannabis use disorder (CUD), a condition linked to altered hippocampal integrity. Evidence suggests high-intensity interval training (HIIT) enhances hippocampal structure and function, with this form of physical exercise potentially mitigating CUD-related cognitive and mental health impairments.
Objective: To determine the impact of a 12-week HIIT intervention on hippocampal integrity (ie, structure, connectivity, biochemistry) compared with 12 weeks of strength and resistance (SR) training in CUD.
JAMA Netw Open
September 2025
Critical Illness, Brain Dysfunction, and Survivorship Center, Vanderbilt University Medical Center, Nashville, Tennessee.
Importance: Survivors of critical illness often have ongoing issues that affect functioning, including driving ability.
Objective: To examine whether intensive care unit (ICU) delirium is independently associated with long-term changes in driving behaviors.
Design, Setting, And Participants: This multicenter, longitudinal cohort study included 151 survivors of critical illness residing within 200 miles of Nashville, Tennessee.
Cereb Cortex
August 2025
Section of Brain Function Information, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
This study aimed to identify brain activity modulations associated with different types of visual tracking using advanced functional magnetic resonance imaging techniques developed by the Human Connectome Project (HCP) consortium. Magnetic resonance imaging data were collected from 27 healthy volunteers using a 3-T scanner. During a single run, participants either fixated on a stationary visual target (fixation block) or tracked a smoothly moving or jumping target (smooth or saccadic tracking blocks), alternating across blocks.
View Article and Find Full Text PDFCereb Cortex
August 2025
School of Psychology, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, United Kingdom.
Alpha oscillations have been implicated in the maintenance of working memory representations. Notably, when memorised content is spatially lateralised, the power of posterior alpha activity exhibits corresponding lateralisation during the retention interval, consistent with the retinotopic organisation of the visual cortex. Beyond power, alpha frequency has also been linked to memory performan ce, with faster alpha rhythms associated with enhanced retention.
View Article and Find Full Text PDFCereb Cortex
August 2025
Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.
Over three decades, statistical parametric mapping has transformed neuroimaging from descriptive mapping to causal inference, placing generative models at the core of causal explanations for brain function. It inspired to a large degree The Virtual Brain, which builds subject-specific digital twins from multimodal data, enabling brain simulations and exploration. Both frameworks converge at parameter estimation, where model and data meet, providing the mathematical manifestation of cause-effect in pathophysiology.
View Article and Find Full Text PDF