Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Clarifying the "water-energy-carbon" nexus process and variation in the carbon emissions of a water system throughout the lifecycle of water resources is crucial for regional water resource management, energy-efficient utilization, and low-carbon development. This study introduces a comprehensive analytical framework for assessing carbon emissions across the entire lifecycle of water resources, grounded in the "water-energy-carbon" nexus. Utilizing statistical data from 2011 to 2021, the research analyzed the dynamic changes in carbon emissions in the water system in Zhejiang. Additionally, the STIRPAT model was employed to forecast carbon emissions from 2022 to 2040. The results showed that: ① The carbon emissions of the water system in Zhejiang mainly exhibited an "upward-downward-upward" trend, with an increase of 2.687 7 million tons in 2011-2012 and 4.888 4 million tons in 2020-2021, respectively, and a decrease of 11.371 6 million tons from 2012 to 2020. ② The carbon emissions of the water system in Zhejiang accounted for more than 95%, which had a decisive impact on the total change in the carbon emissions of the water system. ③ Urbanization rate was a key driving factor for changes in carbon emissions across various water system sectors, while population primarily affected carbon emissions from industrial and residential domestic water use. ④ The carbon emissions from the water system were at the lowest level under the low-carbon scenario and at the highest level under the extensive or coarse development scenario. Residential and public facility water consumption will be the main source of carbon emissions in the water system in the Zhejiang Province. Therefore, while controlling population growth and promoting urbanization, carrying out water-saving and emission reduction measures, including improving water use efficiency, optimizing the structure of water use, and reducing carbon emission intensity are necessary to effectively promote carbon reduction in the water system.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202404095DOI Listing

Publication Analysis

Top Keywords

carbon emissions
44
water system
40
emissions water
32
system zhejiang
20
water
18
carbon
13
emissions
11
system
10
"water-energy-carbon" nexus
8
lifecycle water
8

Similar Publications

The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.

View Article and Find Full Text PDF

The significant global energy consumption strongly emphasizes the crucial role of net-zero or green structures in ensuring a sustainable future. Considering this aspect, incorporating thermal insulation materials into building components is a well-accepted method that helps to enhance thermal comfort in buildings. Furthermore, integrating architectural components made from solid refuse materials retrieved from the environment can have significant environmental benefits.

View Article and Find Full Text PDF

A respirometry system designed for small ruminants.

JDS Commun

September 2025

Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil, 36038-330.

This technical note describes a small ruminant respiration chamber system designed to accurately quantify the production of carbon dioxide (CO) and methane (CH). The system consists of 3 open-circuit respiration chambers, flow meters, gas analyzers, and an accessible environmental control system. To validate its performance, gas recovery tests were conducted by injecting CO and CH at 4 constant flow rates: 0.

View Article and Find Full Text PDF

Ammonia is one of the most important inputs in the global chemical industry, used primarily in fertilizers and explosives. It is increasingly recognized as a potential energy carrier. Its production is dominated by the Haber-Bosch process, which requires high energy consumption and significant capital investment, and contributes significantly to greenhouse gas emissions.

View Article and Find Full Text PDF

Purpose: To quantify and compare the cost, waste, and carbon emissions of single-use and reusable phacoemulsification tubing/cassettes and knives.

Setting: Private, single-specialty ambulatory surgery center (Mountain View, CA, USA).

Design: Retrospective data review.

View Article and Find Full Text PDF