98%
921
2 minutes
20
Glioblastoma (GBM) remains a challenging cancer to treat with limited effective therapies. Standard treatments, including surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy, offer marginal survival benefits but are often limited by side effects and drug resistance. Temozolomide is the most commonly used chemotherapy; however, resistance and lack of efficacy in recurrent GBM hinder its success. Tumor treating fields (TTFields), a novel non-invasive modality that utilizes alternating electric fields, have recently emerged as a promising treatment for GBM. TTFields work by disrupting the function of the mitotic spindle and inducing apoptosis in cancer cells. They can be especially effective when combined with other therapies. TTFields enhance drug delivery when paired with chemotherapy by increasing the permeability of the blood-brain barrier and cell membranes, leading to more effective tumor inhibition. Similarly, TTFields increase cancer cell sensitivity to radiation therapy and improve the efficacy of targeted therapies, such as sorafenib and immunotherapy, particularly in extra-cranial tumors. The Optune device, the primary medical device for TTFields' delivery, offers a convenient and versatile treatment option, allowing remote care and exhibiting fewer adverse effects. This review discusses the potential of TTFields as a valuable addition to GBM treatment, particularly in combination therapies, and highlights the device's clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987984 | PMC |
http://dx.doi.org/10.3390/cancers17071211 | DOI Listing |
Stem Cell Rev Rep
September 2025
Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France.
Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.
View Article and Find Full Text PDFClin Transl Oncol
September 2025
Department of Radiation Oncology, Vithas La Milagrosa University Hospital, Madrid, 28010, Spain.
This narrative review analyzes current evidence comparing single-session and two-session approaches in Stereotactic Body Radiation Therapy (SBRT) and high-dose-rate (HDR) brachytherapy for localized prostate cancer. These ultra-hypofractionated strategies deliver high-precision ablative doses while minimizing exposure to normal tissues. SBRT regimens with fewer than five fractions show tumor control comparable to conventional treatments, offering reduced treatment burden and increased convenience.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.
Purpose: Next-generation sequencing (NGS) has revolutionized cancer treatment by enabling comprehensive cancer genomic profiling (CGP) to guide genotype-directed therapies. While several prospective trials have demonstrated varying outcomes with CGP in patients with advanced solid tumors, its clinical utility in colorectal cancer (CRC) remains to be evaluated.
Methods: We conducted a prospective observational study of CGP in our hospital between September 2019 and March 2024.
Virchows Arch
September 2025
Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Minas Gerais, Av. Antônio Carlos, Pampulha, Belo Horizonte, 31270-901, Brazil.
Plasmablastic lymphoma (PBL) is a rare and aggressive non-Hodgkin lymphoma with a poor prognosis and short survival rates. It is classified as a large B-cell lymphoma subtype, but carries a plasmacytic immunophenotype. Therefore, PBL has pathogenetic overlaps with diffuse large B-cell lymphoma not otherwise specified (DLBCL NOS) and plasma cell neoplasms (PCNs).
View Article and Find Full Text PDFCancer Immunol Immunother
September 2025
Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Whole blood (WB) transcriptomics offers a minimal-invasive method to assess patients' immune system. This study aimed to identify transcriptional patterns in WB associated with clinical outcomes in patients treated with immune checkpoint inhibitors (ICIs). We performed RNA-sequencing on pre-treatment WB samples from 145 patients with advanced cancer.
View Article and Find Full Text PDF