98%
921
2 minutes
20
Type 4 cardiorenal syndrome (CRS-4) is a pathology in which chronic kidney disease (CKD) triggers the development of cardiovascular disease. CKD pathophysiology produces alterations that can affect the bioenergetics of heart mitochondria, causing oxidative stress and reducing antioxidant glutathione (GSH) levels. GSH depletion alters protein function by affecting post-translational modifications such as S-glutathionylation (RS-SG), exacerbating oxidative stress, and mitochondrial dysfunction. On the other hand, N-acetylcysteine (NAC) is an antioxidant GSH precursor that modulates oxidative stress and RS-SG. Moreover, recent studies have found that NAC can activate the Sirtuin 3 (SIRT3) deacetylase in diseases. However, the role of NAC and its effects on mitochondrial function, redox signaling, and SIRT3 modifications in the heart during CRS-4 have not been studied. This study aimed to investigate the role of NAC in mitochondrial function, redox signaling, and SIRT3 in the hearts of animals with CRS-4 at two months of follow-up. Our results showed that the oral administration of NAC (600 mg/kg/day) improved blood pressure and reduced cardiac fibrosis. NACs' protective effect was associated with preserving cardiac mitochondrial bioenergetics and decreasing these organelles' hydrogen peroxide (HO) production. Additionally, NAC increased GSH levels in heart mitochondria and regulated the redox state, which coincided with an increase in nicotinamide adenine dinucleotide oxidized (NAD) levels and a decrease in mitochondrial acetylated lysines. Finally, NAC increased SIRT3 levels and the activity of superoxide dismutase 2 (SOD-2) in the heart. Thus, treatment with NAC decreases mitochondrial alterations, restores redox signaling, and decreases SIRT3 disturbances during CRS-4 through an antioxidant defense mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939543 | PMC |
http://dx.doi.org/10.3390/antiox14030367 | DOI Listing |
Nat Aging
September 2025
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD-related clinical trials, focusing on aging and neurodegenerative diseases.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106.
The β-adrenergic receptor (βAR), a prototype G protein-coupled receptor, controls cardiopulmonary function underpinning O delivery. Abundance of the βAR is canonically regulated by G protein-coupled receptor kinases and β-arrestins, but neither controls constitutive receptor levels, which are dependent on ambient O. Basal βAR expression is instead regulated by the prolyl hydroxylase/pVHL-E3 ubiquitin ligase system, explaining O responsivity.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China.
A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Teaching & Research Department of Common Course, Shenyang Sport University, Shenyang, 110115, China.
A surface enhanced Raman scattering (SERS)-based sensing platform is devised integrating a TMB redox system for rapid dopamine detection. Gold nanobipyramids (Au NBPs), synthesized via the heat-mediated seed-mediated growth method, possess dual functionality of peroxidase-like activity and SERS activity. This enables them to catalyze the oxidation of TMB and simultaneously amplify the Raman signal of the oxidized TMB product (oxTMB).
View Article and Find Full Text PDFJ Inorg Biochem
September 2025
National Renewable Energy Laboratory, Biosciences Center, Golden, CO, USA. Electronic address:
Flavin-based electron bifurcation (FBEB) is employed by microorganisms for controlling pools of redox equivalents by reversibly splitting electron pairs into high- and low-energy levels from an initial midpoint potential. Our ability to harness this phenomenon is crucial for biocatalytic design which is limited by our understanding of energy coupling in the bifurcation system. In Pyrococcus furiosus, FBEB is carried out by the NADH-dependent ferredoxin:NADP-oxidoreductase (NfnSL), coupling the uphill reduction of ferredoxin in NfnL to the downhill reduction of NAD in NfnS from oxidation of NADPH.
View Article and Find Full Text PDF