Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

New developments in machine learning-based analysis of speech can be hypothesized to facilitate the long-term monitoring of major depressive disorder (MDD) during and after treatment. To test this hypothesis, we collected 550 speech samples from telephone-based clinical interviews with 267 individuals in routine care. With this data, we trained and evaluated a machine learning system to identify the absence/presence of a MDD diagnosis (as assessed with the Structured Clinical Interview for DSM-IV) from paralinguistic speech characteristics. Our system classified diagnostic status of MDD with an accuracy of 66% (sensitivity: 70%, specificity: 62%). Permutation tests indicated that the machine learning system classified MDD significantly better than chance. However, deriving diagnoses from cut-off scores of common depression scales was superior to the machine learning system with an accuracy of 73% for the Hamilton Rating Scale for Depression (HRSD), 74% for the Quick Inventory of Depressive Symptomatology-Clinician version (QIDS-C), and 73% for the depression module of the Patient Health Questionnaire (PHQ-9). Moreover, training a machine learning system that incorporated both speech analysis and depression scales resulted in accuracies between 73 and 76%. Thus, while findings of the present study demonstrate that automated speech analysis shows the potential of identifying patterns of depressed speech, it does not substantially improve the validity of classifications from common depression scales. In conclusion, speech analysis may not yet be able to replace common depression scales in clinical practice, since it cannot yet provide the necessary accuracy in depression detection. This trial is registered with DRKS00023670.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919192PMC
http://dx.doi.org/10.1155/2024/9667377DOI Listing

Publication Analysis

Top Keywords

machine learning
16
learning system
16
depression scales
16
common depression
12
speech analysis
12
machine learning-based
8
major depressive
8
depressive disorder
8
speech
8
paralinguistic speech
8

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF