98%
921
2 minutes
20
NaNiO (NNO) has been investigated as a promising sodium-ion battery cathode material, but it is limited by degradation-induced capacity fade. On desodiation, NNO forms multiple phases with large superstructures due in part to Na-ion vacancy ordering; however, their structures are unknown. Here, we report a structural solution to the NaNiO (P3) desodiated phase using combined Rietveld refinement of high-resolution synchrotron X-ray (SXRD) and neutron powder diffraction (NPD) data, magnetic susceptibility, and Na solid-state nuclear magnetic resonance (ssNMR) spectroscopy. Our experimental results are compared to molecular dynamics (AIMD) simulations, which indicate multiple low-energy structures that are dynamically populated. We observe a combination of competing effects that contribute to the resultant dynamic nature of the structure, including honeycomb ordering of mixed-valence Ni, orbital ordering of Jahn-Teller (JT) distorted Ni, and zigzag Na/vacancy ordering. Our work provides evidence of multiple contributions to the structures of desodiated NaNiO, along with a framework for investigating the other unsolved desodiated structures. This work may also inform our understanding of the Jahn-Teller evolution in other nickel-rich lithium- and sodium-ion cathodes, such as LiNiO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11983708 | PMC |
http://dx.doi.org/10.1021/acs.chemmater.5c00084 | DOI Listing |
Inorg Chem
September 2025
Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
Isovalent anion substitution has been shown to have a tremendous effect on the transport properties in lithium halide solid ionic conductors. Although sodium-ion solid state batteries based on chloride ionic conductors have recently gathered significant attention, investigations of anion substitution in sodium containing chlorides remain scarce. Here, we investigate the role of Br isoelectronic anion substitution in a perovskite-related compound with nominal composition of NaTaCl.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of Functional Materials and Devices for Special Environments Conditions, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry of CAS, Urumqi, 830011, P. R. China.
Owing to its wide bandgap, LaAlO has garnered extensive attention in the field of high-temperature negative temperature coefficient (NTC) thermistors. However, its poor thermal stability and excessively high B value limit the working temperature range. In this work, introducing O 2p and Ni 3d hybrid energy levels into the bandgap is proposed via Ni doping and inducing stacking faults in the crystal structure to narrow the bandgap and enhance aging performance.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2025
Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.
Density functional theory (DFT) calculations are employed to investigate the formation energies, charge redistribution, and binding energies of iron-oxygen divacancies in magnetite (FeO) and hematite (FeO). For magnetite, we focus on the low-temperature phase to explore variations with local environments. Building on previous DFT calculations of the variations in formation energies for oxygen vacancies with local charge and spin order in magnetite, we extend this analysis to include octahedral iron vacancies before analyzing the iron-oxygen divacancies.
View Article and Find Full Text PDFProg Nucl Magn Reson Spectrosc
February 2025
Brown Boveri Platz 4, 5400 Baden, Switzerland.
Zero and ultralow-field nuclear magnetic resonance (ZULF NMR) is an NMR modality where experiments are performed in fields at which spin-spin interactions within molecules and materials are stronger than Zeeman interactions. This typically occurs at external fields of microtesla strength or below, considerably smaller than Earth's field. In ZULF NMR, the measurement of spin-spin couplings and spin relaxation rates provides a nondestructive means for identifying chemicals and chemical fragments, and for conducting sample or process analyses.
View Article and Find Full Text PDFDiscov Nano
September 2025
School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, China.
Surface-enhanced Raman spectroscopy (SERS) by 2D semiconductors relies on chemical (CM) enhancement driven by charge-transfer (CT) processes in bandgap alignment between molecules and substrates. Unfortunately, the low light absorption and weak conferment in the atomic-layer material limit the enhancement factor of Raman intensity (EFRI). Improving the utilization efficiency of excitation light is therefore essential for promoting SERS performance of 2D semiconductors.
View Article and Find Full Text PDF