Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Melittin is a natural antimicrobial peptide isolated from bee venom, and the non-specific cytotoxicity and hemolytic activity severely limit its clinical application. Glycosylation of proteins is very common in physiological and biochemical processes and can modulate the interaction of proteins with their target. In this study, eight glycosyl groups were used to modify the arginine of melittin at sites 22 and/or 24, and single and double arginine -glycosylated peptides were designed and synthesized. Among the acquired 24 glycopeptides, MLT-1c, MLT-3c, MLT-1f, MLT-3f, MLT-1g, and MLT-3h were found to possess higher helicity, while MLT-3c, MLT-3f and MLT-3h showed dramatically reduced hemolytic activity, especially MLT-3c, whose HC value is 199.3 μM. MLT-1a, MLT-3a and MLT-2c exhibited improved inhibitory activity against , and the MIC was 4 μg mL. MLT-1e and MLT-2g have the strongest tolerance to trypsase, and MLT-3c has the highest therapeutic index. In general, rhamnosyl-modified melittin MLT-3c could be a potent agent for antibacterial and antitumor therapy with high stability and low hemolytic side effects.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5ob00398aDOI Listing

Publication Analysis

Top Keywords

hemolytic activity
8
mlt-3c
5
arginine -glycosylation
4
melittin
4
-glycosylation melittin
4
melittin enhances
4
enhances bacteriostatic
4
activity
4
bacteriostatic activity
4
activity antiproliferative
4

Similar Publications

Shiga toxin (Stx) is a virulence factor produced by serotype 1 and Stx-producing (STEC). It causes severe renal damage, leading to hemolytic uremic syndrome (HUS). The main target organ of Stx, the kidney, plays a role in maintaining water homeostasis in the body by increasing an osmotic gradient from the cortex to the medulla.

View Article and Find Full Text PDF

Lithobates palmipes is a frog species whose skin secretions contain peptides belonging to the ranatuerin, brevinin, and temporin families. In this study, the peptide ranatuerin-2PMe was isolated and evaluated for its antimicrobial, hemolytic, antiproliferative, and chemotactic activities. Ranatuerin-2PMe (2933.

View Article and Find Full Text PDF

Design, synthesis and biological evaluation of 3,3-dimethyl-2,3,4,9-tetrahydro-1H-carbazole derivatives as AcrB inhibitors with potent antibiofilm effect for reversing bacterial multidrug resistance.

Bioorg Chem

September 2025

Department of Medicinal Chemistry, Shandong Key Laboratory of Druggability Optimization and Evaluation for Lead Compounds, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China. Electronic address:

A series of novel 3,3-dimethyl-2,3,4,9-tetrahydro-1H-carbazole derivatives were rationally designed, synthesized and evaluated for their biological activity as AcrB inhibitors. The compounds were assessed for their antibiotic potentiating effects, followed by evaluation of Nile Red efflux inhibition, and off-target effects including activity on the outer and inner bacterial membranes. Ten compounds potentiated antibiotic activity at sub-inhibitory concentrations, reducing the minimum inhibitory concentrations (MICs) of at least one of the tested antibiotics by at least 8-fold, with three derivatives (7c, 11g, and 11i) achieving 32-fold MIC reductions at 128 μg/mL.

View Article and Find Full Text PDF

Malaria, a protozoan parasitic disease caused by Plasmodium species, poses significant health risks in endemic regions and contributes to substantial morbidity and mortality. The intricate lifecycle of the parasite, coupled with the emergence of drug-resistant strains, has severely impacted the effectiveness of current anti-malarial treatments. In response, the present study attempts to demonstrate the blood-stage anti-plasmodial action of 30 triazole derivatives designed based on molecular hybridisation technique, and physicochemical properties.

View Article and Find Full Text PDF

Advances in modern nanomedicine, bioengineering, and biomaterial research are linked to the parallel development of biological models for testing innovative biomaterials. Experimental procedures based on biological systems are key to biomaterial engineering, enabling an accurate assessment of biological activity and biosafety, including the biocompatibility of new materials. Although the optimal model for human research is still humans themselves, clinical trials on humans are not always possible, especially in the context of innovative technologies or law/ethical problems.

View Article and Find Full Text PDF