98%
921
2 minutes
20
As a synthetic estrogen, diethylstilbestrol (DES) residues in water pose a threat to human health. In this work, a novel electrochemiluminescence resonance energy transfer (ECL-RET) aptamer sensor based on NCDs@AgPO as a resonance energy transfer donor and Cu doped Eu MOF (Cu: Eu MOF) as an efficient resonance energy transfer acceptor for the detection of diethylstilbestrol (DES) was proposed for the first time. The aptamer sensor uses AgPO nanoparticles loaded with nitrogen-doped carbon quantum dots (NCDs) as the ECL emitter, which improves the electron transfer efficiency of the sensor and promotes the generation of SO radicals, thereby improving the luminescence intensity and stability of the ECL sensor. The energy acceptor Cu: Eu MOF binds to the apt on NCDs@AgPO by complementary base pairing through complementary DNA (cDNA). When DES is present in the sample, DES competes with the energy acceptor. The stronger interaction between DES and apt leads to the shedding of Cu: Eu MOF-cDNA from the electrode and the recovery of ECL signal. Based on this, under optimal conditions, the linear range of the sensor for detecting DES is 1.0 × 10-1.0 × 10 M, and the detection limit is 7.4 × 10 M (S/N = 3). The developed aptasensor showed excellent recognition ability for residual DES in actual water samples. The sensor has superior measurement ability and potential application value in the field of environmental water quality monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2025.108987 | DOI Listing |
Anal Bioanal Chem
September 2025
GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
Illicit drug abuse poses a significant global threat to public health and social security, highlighting the urgent need for rapid, sensitive, and versatile detection technologies. To address the limitations of traditional chromatographic techniques-such as high costs and slow response times-and the drawbacks of conventional immunochromatographic sensors (ICS), including low sensitivity and non-intuitive signal outputs, a fluorescence-quenching ICS (FQICS) was developed. This sensor leverages fluorescence resonance energy transfer (FRET) between aggregation-induced emission fluorescent microspheres (AIEFMs) and gold nanoparticles (AuNPs).
View Article and Find Full Text PDFNature
September 2025
National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.
Controlling spin currents, that is, the flow of spin angular momentum, in small magnetic devices, is the principal objective of spin electronics, a main contender for future energy-efficient information technologies. A pure spin current has never been measured directly because the associated electric stray fields and/or shifts in the non-equilibrium spin-dependent distribution functions are too small for conventional experimental detection methods optimized for charge transport. Here we report that resonant inelastic X-ray scattering (RIXS) can bridge this gap by measuring the spin current carried by magnons-the quanta of the spin wave excitations of the magnetic order-in the presence of temperature gradients across a magnetic insulator.
View Article and Find Full Text PDFNature
September 2025
Research Center for Industries of the Future, Westlake University, Hangzhou, China.
The electrolyte-electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid-electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs). However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge.
View Article and Find Full Text PDFNat Nanotechnol
September 2025
School of Engineering, The University of Tokyo, Tokyo, Japan.
Active metasurfaces incorporating electro-optic materials enable high-speed free-space optical modulators that show great promise for a wide range of applications, including optical communication, sensing and computing. However, the limited light-matter interaction lengths in metasurfaces typically require high driving voltages exceeding tens of volts to achieve satisfactory modulation. Here we present low-voltage, high-speed free-space optical modulators based on silicon-organic-hybrid metasurfaces with dimerized-grating-based nanostructures.
View Article and Find Full Text PDFSci Rep
September 2025
Viet Tri University of Industry, Viet Tri City, 35100, Vietnam.
The tracked vehicle (TV) primarily operates on poor road surfaces, which means the vibration excitation of the road surface significantly impacts the driver's sighting efficiency and driving comfort. This is the cause of reduced vehicle combat efficiency. To address this, based on the dynamic interaction model between the TV, Seat, and Driver established in Matlab/Simulink software, all the dynamic parameters of the suspension system of the TV and seat are then simulated under different operation conditions of the TV.
View Article and Find Full Text PDF