Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: E2F Transcription Factor 1 (E2F1) is a transcription factor that plays a crucial role in the growth of many cancers, including hepatocellular carcinoma (HCC). Herein, this study probed the functions and underlying mechanisms of E2F1 in HCC tumorigenesis.

Methods: The expression profiles of E2F1 and Exosome Component 10 (EXOSC10) were detected using qRT-PCR and western blotting. Functional experiments were carried out using 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, tube formation, and sphere formation assays in vitro, as well as xenograft experiments in vivo, respectively. Stemness-related proteins were assayed using western blotting. The interaction between E2F1 and EXOSC10 was verified using bioinformatics analysis and dual-luciferase reporter assay.

Results: E2F1 was highly expressed in HCC tissues and cells, and was associated with advanced TNM stage, distant metastasis, and short survival rate. Functionally, knockdown of E2F1 suppressed HCC cell proliferation, angiogenesis, and stemness, and induced cell apoptosis. Mechanistically, E2F1 directly bound to the promoter region of EXOSC10 to up-regulate its expression. EXOSC10 silencing impaired HCC cell proliferation, angiogenesis, and stemness. Moreover, the anticancer effects of E2F1 knockdown were reversed by EXOSC10 elevation. In vivo assay, E2F1 deficiency suppressed HCC tumor growth and eliminated cancer stemness, while these effects were abolished by EXOSC10 up-regulation.

Conclusion: E2F1 promotes EXOSC10 transcription and then facilitates HCC growth and cancer stemness, revealing a potential target for HCC therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992873PMC
http://dx.doi.org/10.1186/s41065-025-00430-7DOI Listing

Publication Analysis

Top Keywords

e2f1
10
exosc10 transcription
8
hepatocellular carcinoma
8
transcription factor
8
hcc
8
western blotting
8
suppressed hcc
8
hcc cell
8
cell proliferation
8
proliferation angiogenesis
8

Similar Publications

The adult mammalian heart has a limited ability to regenerate lost myocardium following myocardial infarction (MI), largely due to the poor proliferative capacity of cardiomyocytes. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a known regulator of cell quiescence, though the mechanisms underlying its function remain unclear. Previous studies have shown that pharmacological inhibition of DYRK1A using harmine induces cardiomyocyte cell cycle re-entry after ischemia/reperfusion (I/R) MI.

View Article and Find Full Text PDF

Lung adenocarcinoma (LUAD) is a predominant subtype of non-small cell lung adenocarcinoma (NSCLC). It is typically asymptomatic and associated with high mortality rates. Despite recent advancements in screening technologies and therapeutic approaches, its pathogenesis still remains elusive.

View Article and Find Full Text PDF

Mitotic cell cycle (MCC) is a critical process in cell growth and division, and dysregulation of MCC genes may contribute to tumorigenesis. In this study, to identify diagnostic and prognostic value of MCC genes, differentially expressed MCC genes between HCC and normal tissues were identified and subjected to machine learning methods. SVM-RFE and RF-RFE were employed to select the most informative diagnostic genes.

View Article and Find Full Text PDF

The Transcriptional Coactivator Gene Is a Target of the Transcription Factor E2F1 Deregulated from the Tumor Suppressor pRB.

Genes (Basel)

August 2025

Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Japan.

Background: DEAD/H box 5 (DDX5) serves as a transcriptional coactivator for several transcription factors including E2F1, the primary target of the tumor suppressor pRB. E2F1 physiologically activated by growth stimulation activates growth-related genes and promotes cell proliferation. In contrast, upon loss of pRB function due to oncogenic changes, E2F1 is activated out of restraint by pRB (deregulated E2F1) and stimulates tumor suppressor genes such as , which activates the tumor suppressor p53, to suppress tumorigenesis.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide with KRAS mutations present in nearly 45% of cases. Compared to KRAS wild-type (WT) CRC, KRAS-mutant CRC is associated with poorer prognosis and fewer effective treatment options. Protein Arginine Methyltransferase 5 (PRMT5), an epigenetic regulator involved in diverse cellular processes, is currently under investigation as a therapeutic target in multiple cancer types.

View Article and Find Full Text PDF