98%
921
2 minutes
20
Background: Mesial temporal lobe epilepsy (mTLE) is the most common form of focal epilepsy, often associated with hippocampal sclerosis. Increasing evidence suggests the pivotal role of neuroinflammation in mTLE onset and progression.
Methods: We used morphometric similarity network (MSN) analysis and the Allen Human Brain Atlas (AHBA) database to investigate structural changes between mTLE and healthy controls, as well as correlation with inflammation-related gene expression.
Results: We identified widespread alterations across the frontal and parietal lobes and cingulate cortex linked to neuroinflammatory genes such as PRR5, SMAD3, and IRF3. This correlation was even more pronounced in mTLE patients with hippocampal sclerosis compared to those without. Enrichment analysis highlighted pathways related to neurodevelopment and neurodegeneration, supporting a bidirectional link between mTLE and neurodegenerative diseases.
Conclusions: These findings suggest that brain-wide macroscopic morphometric alternations in mTLE are correlated to the neuroinflammation process. It provides circumstantial evidence from a new perspective to support the bidirectional link between mTLE and neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960352 | PMC |
http://dx.doi.org/10.1186/s42494-025-00208-4 | DOI Listing |
Mycologia
September 2025
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
Understanding the diversity of microscopic hyphomycetes is an ongoing effort, and many species remain undescribed. While studying lichen organismal composition in western Canada, metagenomic data revealed the presence of an unknown species of (, Ascomycota), a genus of pollen-parasitic fungus with no previous records in the region. We developed genus-specific primers to amplify DNA in lichen and adjacent substrate extractions, successfully detecting multiple lineages of across a wide geographic range within North America.
View Article and Find Full Text PDFAm J Biol Anthropol
September 2025
Magyar Gyula Horticultural, Technical and Vocational Training School, Budapest, Hungary.
Objectives: This study explores cranial morphological variation and population continuity in the Carpathian Basin from the 1st to 13th centuries CE. It focuses on assessing biological differences and similarities across major archaeological periods, with particular emphasis on the Avar, Hungarian Conquest, and Árpádian Age populations.
Materials And Methods: A total of 1,597 adult crania (864 males, 733 females) were analyzed using six neurocranial measurements.
Environ Monit Assess
September 2025
Department of Geography, Rampurhat College, University of North Bengal, Darjeeling, 734013, India.
Catastrophic climate events such as floods significantly impact infrastructure, agriculture, and the economy. The lower Gandak River basin in India is particularly flood-prone, with Bihar experiencing annual losses of life and property due to massive flooding. Identifying flood-prone zones in this region is essential.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2025
Department of Pediatrics, Washington University, St. Louis, Missouri.
Excess testosterone (T) exposure from early to mid-gestation (days 30-90) leads to sexually dimorphic adverse cardiac left ventricular (LV) programming at fetal day 90 (term 147 days). Whether this sexually dimorphic impact is a direct effect of T or reprogramming that persists beyond early fetal life is unknown. We hypothesized that adverse sex-specific cardiac outcomes seen in early fetal life will persist in late gestational fetuses.
View Article and Find Full Text PDFSignificant changes occur in brain structure and cognitive abilities during adolescence. Investigating their association can provide insight into brain-based cognitive development, yet previous studies were limited by narrow brain measures, small samples, and lacking focus on age-related variation. Here, we analyzed a large cohort (N = 8,534, age 9-15) from the Adolescent Brain Cognitive Development dataset.
View Article and Find Full Text PDF